Чтобы вычесть дроби с разными знаменателями нужно. Вычитание смешанных дробей

Диеты 12.10.2019
Диеты

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей - правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби - выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Следующее действие, которое можно выполнять с обыкновенными дробями, - вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Yandex.RTB R-A-339285-1

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 - 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b - c b = a - c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 - 17 15 = 24 - 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 37 12 - 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 - 15 12 = 37 - 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 - 3 45 = 10 - 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 - 1 15 = 10 45 - 3 45 = 10 - 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 19 9 - 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 - 7 36 = 76 - 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ - 1 11 12 .

Краткая запись всего решения - 19 9 - 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 - 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 - 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7 - 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 - 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 - 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 - 13 62 = (1064 + 1) - 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 - 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 - 13 62 = 1 1 - 13 62 = 62 62 - 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 - 13 62 = 1065 1 - 13 62 = 1065 · 62 1 · 62 - 13 62 = 66030 62 - 13 62 = = 66030 - 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 - 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 - 3 5 = (629 + 1) - 3 5 = 629 + 1 - 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 24 4 - 3 2 - 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 - 3 2 , а потом отнимем от нее последнюю дробь:

25 4 - 3 2 = 24 4 - 6 4 = 19 4 19 4 - 5 6 = 57 12 - 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог - 3 11 12 .

Краткая запись всего решения:

25 4 - 3 2 - 5 6 = 25 4 - 3 2 - 5 6 = 25 4 - 6 4 - 5 6 = = 19 4 - 5 6 = 57 12 - 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98 + 17 20 - 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 - 5 + 3 5 = 98 + 17 20 - 5 - 3 5 = 98 - 5 + 17 20 - 3 5

Завершим расчеты: 98 - 5 + 17 20 - 3 5 = 93 + 17 20 - 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Ваш ребенок принес домашнее задание из школы, и вы не знаете как его решить? Тогда этот мини урок для вас!

Как складывать десятичные дроби

Десятичные дроби удобнее складывать в столбик. Чтобы выполнить сложение десятичных дробей, надо придерживаться одного простого правила:

  • Разряд должен находиться под разрядом, запятая под запятой.

Как вы видите на примере, целые единицы находятся друг под другом, разряд десятых и сотых находится друг под другом. Теперь складываем числа, не обращая внимания на запятую. Что же делать с запятой? Запятая переносится на то место, где стояла в разряде целых.

Сложение дробей с равными знаменателями

Чтобы выполнить сложение с общим знаменателем, надо сохранить знаменатель без изменения, найти сумму числителей и получим дробь, которая будет являться общей суммой.


Сложение дробей с разными знаменателями методом нахождения общего кратного

Первое, на что надо обратить внимание – это на знаменатели. Знаменатели разные, не делятся ли одно на другое, являются ли простыми числами. Для начала надо привести к одному общему знаменателю, для этого существует несколько способов:

  • 1/3 + 3/4 = 13/12, для решения этого примера нам надо найти наименьшее общее кратное число (НОК), которое будет делиться на 2 знаменателя. Для обозначения наименьшего кратного чисел a и b – НОК (а;b). В данном примере НОК (3;4)=12. Проверяем: 12:3=4; 12:4=3.
  • Перемножаем множители и выполняем сложение полученных чисел, получаем 13/12 – неправильную дробь.


  • Для того чтобы перевести неправильную дробь в правильную, разделим числитель на знаменатель, получим целое число 1, остаток 1 – числитель и 12 – знаменатель.

Сложение дробей методом умножения крест на крест

Для складывания дробей с разными знаменателями существует еще один способ по формуле “крест на крест”. Это гарантированный способ уровнять знаменатели, для этого вам надо числители перемножить со знаменателем одной дроби и обратно. Если вы только на начальном этапе изучения дробей, то этот способ самый простой и точный, как получить верный результат при сложении дробей с разными знаменателями.

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему - сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

Правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями

Сфор-му-ли-ру-ем пра-ви-ло сло-же-ния (вы-чи-та-ния) ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми (оно сов-па-да-ет с ана-ло-гич-ным пра-ви-лом для обык-но-вен-ных дро-бей): То есть для сло-же-ния или вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми необ-хо-ди-мо со-ста-вить со-от-вет-ству-ю-щую ал-геб-ра-и-че-скую сумму чис-ли-те-лей, а зна-ме-на-тель оста-вить без из-ме-не-ний.

Это пра-ви-ло мы раз-бе-рём и на при-ме-ре обык-но-вен-ных дро-бей, и на при-ме-ре ал-геб-ра-и-че-ских дро-бей.

Примеры применения правила для обыкновенных дробей

При-мер 1. Сло-жить дроби: .

Ре-ше-ние

Сло-жим чис-ли-те-ли дро-бей, а зна-ме-на-тель оста-вим таким же. После этого раз-ло-жим чис-ли-тель и зна-ме-на-тель на про-стые мно-жи-те-ли и со-кра-тим. По-лу-чим: .

При-ме-ча-ние: стан-дарт-ная ошиб-ка, ко-то-рую до-пус-ка-ют при ре-ше-нии по-доб-но-го рода при-ме-ров, за-клю-ча-ет-ся в сле-ду-ю-щем спо-со-бе ре-ше-ния: . Это гру-бей-шая ошиб-ка, по-сколь-ку зна-ме-на-тель оста-ёт-ся таким же, каким был в ис-ход-ных дро-бях.

При-мер 2. Сло-жить дроби: .

Ре-ше-ние

Дан-ная за-да-ча ничем не от-ли-ча-ет-ся от преды-ду-щей: .

Примеры применения правила для алгебраических дробей

От обык-но-вен-ных дро-бей пе-рей-дём к ал-геб-ра-и-че-ским.

При-мер 3. Сло-жить дроби: .

Ре-ше-ние:как уже го-во-ри-лось выше, сло-же-ние ал-геб-ра-и-че-ских дро-бей ничем не от-ли-ча-ет-ся от сло-же-ния обык-но-вен-ных дро-бей. По-это-му метод ре-ше-ния такой же: .

При-мер 4. Вы-честь дроби: .

Ре-ше-ние

Вы-чи-та-ние ал-геб-ра-и-че-ских дро-бей от-ли-ча-ет-ся от сло-же-ния толь-ко тем, что в чис-ли-тель за-пи-сы-ва-ет-ся раз-ность чис-ли-те-лей ис-ход-ных дро-бей. По-это-му .

При-мер 5. Вы-честь дроби: .

Ре-ше-ние: .

При-мер 6. Упро-стить: .

Ре-ше-ние: .

Примеры применения правила с последующим сокращением

В дроби, ко-то-рая по-лу-ча-ет-ся в ре-зуль-та-те сло-же-ния или вы-чи-та-ния, воз-мож-ны со-кра-ще-ния. Кроме того, не стоит за-бы-вать об ОДЗ ал-геб-ра-и-че-ских дро-бей.

При-мер 7. Упро-стить: .

Ре-ше-ние: .

При этом . Во-об-ще, если ОДЗ ис-ход-ных дро-бей сов-па-да-ет с ОДЗ ито-го-вой, то его можно не ука-зы-вать (ведь дробь, по-лу-чен-ная в от-ве-те, также не будет су-ще-ство-вать при со-от-вет-ству-ю-щих зна-че-ни-ях пе-ре-мен-ных). А вот если ОДЗ ис-ход-ных дро-бей и от-ве-та не сов-па-да-ет, то ОДЗ ука-зы-вать необ-хо-ди-мо.

При-мер 8. Упро-стить: .

Ре-ше-ние: . При этом y (ОДЗ ис-ход-ных дро-бей не сов-па-да-ет с ОДЗ ре-зуль-та-та).

Сложение и вычитание обыкновенных дробей с разными знаменателями

Чтобы скла-ды-вать и вы-чи-тать ал-геб-ра-и-че-ские дроби с раз-ны-ми зна-ме-на-те-ля-ми, про-ве-дём ана-ло-гию с обык-но-вен-ны-ми дро-бя-ми и пе-ре-не-сём её на ал-геб-ра-и-че-ские дроби.

Рас-смот-рим про-стей-ший при-мер для обык-но-вен-ных дро-бей.

При-мер 1. Сло-жить дроби: .

Ре-ше-ние:

Вспом-ним пра-ви-ло сло-же-ния дро-бей. Для на-ча-ла дроби необ-хо-ди-мо при-ве-сти к об-ще-му зна-ме-на-те-лю. В роли об-ще-го зна-ме-на-те-ля для обык-но-вен-ных дро-бей вы-сту-па-ет наи-мень-шее общее крат-ное (НОК) ис-ход-ных зна-ме-на-те-лей.

Опре-де-ле-ние

Наи-мень-шее на-ту-раль-ное число, ко-то-рое де-лит-ся од-но-вре-мен-но на числа и .

Для на-хож-де-ния НОК необ-хо-ди-мо раз-ло-жить зна-ме-на-те-ли на про-стые мно-жи-те-ли, а затем вы-брать все про-стые мно-жи-те-ли, ко-то-рые вхо-дят в раз-ло-же-ние обоих зна-ме-на-те-лей.

; . Тогда в НОК чисел долж-ны вхо-дить две двой-ки и две трой-ки: .

После на-хож-де-ния об-ще-го зна-ме-на-те-ля, необ-хо-ди-мо для каж-дой из дро-бей найти до-пол-ни-тель-ный мно-жи-тель (фак-ти-че-ски, по-де-лить общий зна-ме-на-тель на зна-ме-на-тель со-от-вет-ству-ю-щей дроби).

Затем каж-дая дробь умно-жа-ет-ся на по-лу-чен-ный до-пол-ни-тель-ный мно-жи-тель. По-лу-ча-ют-ся дроби с оди-на-ко-вы-ми зна-ме-на-те-ля-ми, скла-ды-вать и вы-чи-тать ко-то-рые мы на-учи-лись на про-шлых уро-ках.

По-лу-ча-ем: .

Ответ: .

Рас-смот-рим те-перь сло-же-ние ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми. Сна-ча-ла рас-смот-рим дроби, зна-ме-на-те-ли ко-то-рых яв-ля-ют-ся чис-ла-ми.

Сложение и вычитание алгебраических дробей с разными знаменателями

При-мер 2. Сло-жить дроби: .

Ре-ше-ние:

Ал-го-ритм ре-ше-ния аб-со-лют-но ана-ло-ги-чен преды-ду-ще-му при-ме-ру. Легко по-до-брать общий зна-ме-на-тель дан-ных дро-бей: и до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из них.

.

Ответ: .

Итак, сфор-му-ли-ру-ем ал-го-ритм сло-же-ния и вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми :

1. Найти наи-мень-ший общий зна-ме-на-тель дро-бей.

2. Найти до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из дро-бей (по-де-лив общий зна-ме-на-тель на зна-ме-на-тель дан-ной дроби).

3. До-мно-жить чис-ли-те-ли на со-от-вет-ству-ю-щие до-пол-ни-тель-ные мно-жи-те-ли.

4. Сло-жить или вы-честь дроби, поль-зу-ясь пра-ви-ла-ми сло-же-ния и вы-чи-та-ния дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми.

Рас-смот-рим те-перь при-мер с дро-бя-ми, в зна-ме-на-те-ле ко-то-рых при-сут-ству-ют бук-вен-ные вы-ра-же-ния.

Смешанные дроби также, как и простые дроби можно вычитать. Чтобы отнять смешанные числа дробей нужно знать несколько правил вычитания. Изучим эти правила на примерах.

Вычитание смешанных дробей с одинаковыми знаменателями.

Рассмотрим пример с условием, что уменьшаемое целое и дробная часть больше соответственно вычитаемого целой и дробной части. При таких условиях вычитание происходит отдельно. Целую часть вычитаем из целой части, а дробную часть из дробной .

Рассмотрим пример:

Выполните вычитание смешанных дробей \(5\frac{3}{7}\) и \(1\frac{1}{7}\).

\(5\frac{3}{7}-1\frac{1}{7} = (5-1) + (\frac{3}{7}-\frac{1}{7}) = 4\frac{2}{7}\)

Правильность вычитания проверяется сложением. Сделаем проверку вычитания:

\(4\frac{2}{7}+1\frac{1}{7} = (4 + 1) + (\frac{2}{7} + \frac{1}{7}) = 5\frac{3}{7}\)

Рассмотрим пример с условием, когда дробная часть уменьшаемого меньше соответственно дробной части вычитаемого. В таком случае мы занимаем единицу у целого в уменьшаемом.

Рассмотрим пример:

Выполните вычитание смешанных дробей \(6\frac{1}{4}\) и \(3\frac{3}{4}\).

У уменьшаемого \(6\frac{1}{4}\) дробная часть меньше чем у дробной части вычитаемого \(3\frac{3}{4}\). То есть \(\frac{1}{4} < \frac{1}{3}\), поэтому сразу отнять мы не сможем. Займем у целой части у 6 единицу, а потом выполним вычитание. Единицу мы запишем как \(\frac{4}{4} = 1\)

\(\begin{align}&6\frac{1}{4}-3\frac{3}{4} = (6 + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {1} + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {\frac{4}{4}} + \frac{1}{4})-3\frac{3}{4} = (5 + \frac{5}{4})-3\frac{3}{4} = \\\\ &= 5\frac{5}{4}-3\frac{3}{4} = 2\frac{2}{4} = 2\frac{1}{4}\\\\ \end{align}\)

Следующий пример:

\(7\frac{8}{19}-3 = 4\frac{8}{19}\)

Вычитание смешанного дроби из целого числа.

Пример: \(3-1\frac{2}{5}\)

Уменьшаемое 3 не имеет дробной части, поэтому сразу отнять мы не сможем. Займем у целой части у 3 единицу, а потом выполним вычитание. Единицу мы запишем как \(3 = 2 + 1 = 2 + \frac{5}{5} = 2\frac{5}{5}\)

\(3-1\frac{2}{5}= (2 + \color{red} {1})-1\frac{2}{5} = (2 + \color{red} {\frac{5}{5}})-1\frac{2}{5} = 2\frac{5}{5}-1\frac{2}{5} = 1\frac{3}{5}\)

Вычитание смешанных дробей с разными знаменателями.

Рассмотрим пример с условием, если дробные части уменьшаемого и вычитаемого с разными знаменателями. Нужно привести к общему знаменателю, а потом выполнить вычитание .

Выполните вычитание двух смешанных дробей с разными знаменателями \(2\frac{2}{3}\) и \(1\frac{1}{4}\).

Общим знаменателем будет число 12.

\(2\frac{2}{3}-1\frac{1}{4} = 2\frac{2 \times \color{red} {4}}{3 \times \color{red} {4}}-1\frac{1 \times \color{red} {3}}{4 \times \color{red} {3}} = 2\frac{8}{12}-1\frac{3}{12} = 1\frac{5}{12}\)

Вопросы по теме:
Как вычитать смешанные дроби? Как решать смешанные дроби?
Ответ: нужно определиться к какому типу относиться выражение и по типу выражения применять алгоритм решения. Из целой части вычитаем целое, у дробной части вычитаем дробную часть.

Как из целого числа вычесть дробь? Как от целого числа отнять дробь?
Ответ: у целого числа нужно занять единицу и записать эту единицу в виде дроби

\(4 = 3 + 1 = 3 + \frac{7}{7} = 3\frac{7}{7}\),

а потом целое отнять от целого, дробную часть отнять от дробной части. Пример:

\(4-2\frac{3}{7} = (3 + \color{red} {1})-2\frac{3}{7} = (3 + \color{red} {\frac{7}{7}})-2\frac{3}{7} = 3\frac{7}{7}-2\frac{3}{7} = 1\frac{4}{7}\)

Пример №1:
Выполните вычитание правильной дроби из единицы: а) \(1-\frac{8}{33}\) б) \(1-\frac{6}{7}\)

Решение:
а) Представим единицу как дробь со знаменателем 33. Получим \(1 = \frac{33}{33}\)

\(1-\frac{8}{33} = \frac{33}{33}-\frac{8}{33} = \frac{25}{33}\)

б) Представим единицу как дробь со знаменателем 7. Получим \(1 = \frac{7}{7}\)

\(1-\frac{6}{7} = \frac{7}{7}-\frac{6}{7} = \frac{7-6}{7} = \frac{1}{7}\)

Пример №2:
Выполните вычитание смешанной дроби из целого числа: а) \(21-10\frac{4}{5}\) б) \(2-1\frac{1}{3}\)

Решение:
а) Займем у целого числа 21 единицу и распишем так \(21 = 20 + 1 = 20 + \frac{5}{5} = 20\frac{5}{5}\)

\(21-10\frac{4}{5} = (20 + 1)-10\frac{4}{5} = (20 + \frac{5}{5})-10\frac{4}{5} = 20\frac{5}{5}-10\frac{4}{5} = 10\frac{1}{5}\\\\\)

б) Займем у целого числа 2 единицу и распишем так \(2 = 1 + 1 = 1 + \frac{3}{3} = 1\frac{3}{3}\)

\(2-1\frac{1}{3} = (1 + 1)-1\frac{1}{3} = (1 + \frac{3}{3})-1\frac{1}{3} = 1\frac{3}{3}-1\frac{1}{3} = \frac{2}{3}\\\\\)

Пример №3:
Выполните вычитание целого числа из смешанной дроби: а) \(15\frac{6}{17}-4\) б) \(23\frac{1}{2}-12\)

а) \(15\frac{6}{17}-4 = 11\frac{6}{17}\)

б) \(23\frac{1}{2}-12 = 11\frac{1}{2}\)

Пример № 4:
Выполните вычитание правильной дроби из смешанной дроби: а) \(1\frac{4}{5}-\frac{4}{5}\)

\(1\frac{4}{5}-\frac{4}{5} = 1\\\\\)

Пример №5:
Вычислите \(5\frac{5}{16}-3\frac{3}{8}\)

\(\begin{align}&5\frac{5}{16}-3\frac{3}{8} = 5\frac{5}{16}-3\frac{3 \times \color{red} {2}}{8 \times \color{red} {2}} = 5\frac{5}{16}-3\frac{6}{16} = (5 + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {1} + \frac{5}{16})-3\frac{6}{16} = \\\\ &= (4 + \color{red} {\frac{16}{16}} + \frac{5}{16})-3\frac{6}{16} = (4 + \color{red} {\frac{21}{16}})-3\frac{3}{8} = 4\frac{21}{16}-3\frac{6}{16} = 1\frac{15}{16}\\\\ \end{align}\)



Рекомендуем почитать

Наверх