Пруд зимой. Особенности поведения рыбы в воде Сколько градусов под льдом реки

Мода 24.07.2019
Мода

Глубокая осень. Дни становятся всё короче и короче. Солнце выглянет на минуту из-за тяжёлых туч, скользнёт по земле своим косым лучом и снова скроется. Холодный ветер свободно гуляет по опустевшим полям и обнажённому лесу, выискивая где-нибудь ещё уцелевший цветок или прижавшийся к ветке лист, чтобы сорвать его, высоко поднять и потом бросить в ров, канаву или борозду. По утрам лужи уже покрываются хрустящими льдинками. Только глубокий пруд все ещё не хочет замёрзнуть, и ветер по-прежнему рябит его серую гладь. Но вот уже замелькали пушистые снежинки. Они подолгу крутятся в воздухе, как бы не решаясь упасть на холодную неприветливую землю. Идёт зима.

Тонкая корка льда, образовавшегося сначала у берегов пруда, ползёт на середину к более глубоким местам, и вскоре вся поверхность покрывается чистым прозрачным стеклом льда. Ударили морозы, и лёд стал толстым, чуть не в метр. Однако до дна ещё далеко. Подо льдом даже в сильные морозы сохраняется вода. Почему же глубокий пруд не промерзает до дна? Обитатели водоёмов должны быть благодарны за это одной из особенностей воды. В чём же заключается эта особенность?

Известно, что кузнец сначала нагревает железную шину, а затем надевает её на деревянный обод колеса. Охладившись, шина сделается короче и плотно обожмёт обод. Рельсы никогда не укладываются плотно друг к другу, иначе, нагревшись на солнце, они обязательно изогнутся. Если налить полную бутылку масла и поставить её в тёплую воду, то масло станет переливаться через край.

Из этих примеров ясно, что при нагревании тела расширяются; при охлаждении они сжимаются. Это справедливо почти для всех тел, но для воды этого нельзя утверждать безоговорочно. В отличие от других тел вода при нагревании ведёт себя по-особому. Если при нагревании тело расширяется, значит, оно становится менее плотным, - ведь вещества в этом теле остаётся столько же, а объём его увеличивается. При нагревании жидкостей в прозрачных сосудах можно наблюдать, как более тёплые и потому менее плотные слои поднимаются со дна вверх, а холодные опускаются вниз. На этом основано, между прочим, устройство водяного отопления с естественной циркуляцией воды. Остывая в радиаторах, вода становится плотнее, опускается вниз и поступает в котёл, вытесняя вверх уже нагретую там и потому менее плотную воду.

Подобное движение происходит и в пруду. Отдавая своё тепло холодному воздуху, вода охлаждается с поверхности пруда и, как более плотная, стремится опуститься на дно, вытесняя собой нижние тёплые, менее плотные слои. Однако такое движение будет совершаться только до тех пор, пока вся вода не остынет до плюс 4 градусов. Собравшаяся на дне при температуре 4 градуса вода уже не будет подниматься вверх, хотя бы поверхностные её слои и имели температуру более низкую. Почему?

Вода при 4 градусах имеет самую большую плотность. При всех других температурах - выше или ниже 4 градусов - вода оказывается менее плотной, чем при этой температуре.

В этом и заключается одно из отступлений воды от закономерностей, общих для других жидкостей, одна из её аномалий (аномалия - это отклонение от нормы). Плотность всех других жидкостей, как правило, начиная от температуры плавления, при нагревании уменьшается.

Что же произойдёт дальше при остывании пруда? Верхние слои воды становятся всё менее и менее плотными. Поэтому они остаются на поверхности и при нуле градусов превращаются в лёд. По мере дальнейшего остывания корка льда растёт, а под ним по-прежнему находится жидкая вода с температурой, лежащей между нулём и 4 градусами.

Здесь, вероятно, у многих возникает вопрос: почему же нижняя кромка льда не тает, если она находится в соприкосновении с водой? Потому, что тот слой воды, который непосредственно соприкасается с нижней кромкой льда, имеет температуру нуль градусов. При этой температуре одновременно существуют и лёд и вода. Для того чтобы лёд превратился в воду, необходимо, как увидим дальше, значительное количество тепла. А этого тепла нет. Лёгкий слой воды с температурой в нуль градусов отделяет ото льда более глубокие слои тёплой воды.

Но представьте теперь себе, что вода ведёт себя так, как большинство других жидкостей. Достаточно было бы незначительного мороза, как все реки, озёра, а может быть и северные моря, в течение зимы промёрзли бы до дна. Многие из живых существ подводного царства были бы обречены на гибель.

Правда, если зима очень продолжительна и сурова, то многие не слишком глубокие водоёмы могут промёрзнуть до дна. Но в наших широтах это наблюдается крайне редко. Промерзанию воды до дна препятствует и сам лёд: он плохо проводит тепло и защищает собой нижние слои воды от охлаждения.

В средней полосе России фенологическая (природная) зима наступает обычно с середины ноября. К этому времени заканчивается столь нелюбимый рыболовами период «межсезонья» с его перепадами атмосферного давления и температуры, чередованием заморозков и дождей, капризами многих видов рыб. Почитатели зимней рыбалки считают собственно зимой временной отрезок с момента образования устойчивого ледового покрова до распаления льда (с середины ноября по конец марта). Иногда ледовый покров на водоемах появляется на месяц-полтора позже начала календарной зимы (где-то в начале-середине января). Чаще это происходит в южных районах России. В некоторых регионах СНГ на реках и озерах вообще не устанавливается ледовый покров и разница между затянувшейся осенью и незаметно наступившей зимой практически незаметна.

С наступлением зимы в водных си­стемах происходят значительные из­менения, влияющие на поведение подводных обитателей.

Ледовый покров, освещенность и поведение рыб.

Значение света в жизни животных трудно переоценить. Свет «господ­ствует» над всеми другими экологическими факторами. Ни один фактор среды не претерпевает таких изме­нений, как освещенность: в течение суток ее интенсивность изменяется в десятки миллионов раз (от сотен люк­сов до десятитысячных долей люкса). По своей интенсивности и длитель­ности освещенность играет для во­дных живых организмов роль сигнала начала неких перемен в окружающей среде (наступление утра, ночи, нача­ло прогрева воды и-т. д.), что приво­дит к изменению поведения рыб.

На протяжении осени и начала зимы происходит постепенное уменьшен ние светлого периода суток: в ноябре долгота светового дня в среднем не превышает 9 часов 10 минут. Установ­ление ледового покрова, выпадение снега, преобладание пасмурных дней еще больше снижает освещенность водоемов. Долгие четыре месяца в подводном царстве властвует полуть­ма…

Интересно поведение рыб в на­чальный период зимы. Многие виды теплолюбивых рыб (сазан (карп), ка­рась, линь, белый амур) еще в октя­бре-ноябре собираются в огромные стаи и отправляются на так называе­мые зимовальные ямы. В полуоцепе­нении, практически не двигаясь, они проведут здесь около трех месяцев (до конца февраля). Сазаны стоят на глубине очень плотно, порой до 15-20 особей на 1 м3, рядом находятся же­рехи, язи, лини. При больших морозах с ними соседствуют и лещи, но с пере­меной атмосферного давления и при ослаблении морозов стаи лещей по­кидают зимовальные ямы и «разбре­даются» по водоему в поисках корма.

Опровергая общепринятую точку зрения о местоположении зимней «лежки» сомов, речные великаны за­нимают места около зимовальных ям - на выходах из глубин, границах ям и повышений дна. Такое размещение усатых хищников объясняется тем, что в самой яме уже спустя месяц после образования ледового покрова резко изменяется кислородный режим, что эта рыба в отличии от «толстокожего» сазана (карпа) тяжело переносит.

Окуни, щуки, судаки после осеннего ската на более глубокие места (уход от высокой прозрачности воды и значительной освещенности) с уста­новлением ледового покрова воз­вращаются на места сентябрьских охот. Тем более, что плотва, карась серебристый, верховка и уклейка за редкими исключениями, практически не уходят с облюбованных еще летом мест обитания.

В мелких и малокормных водоемах карась серебристый зарывается под листья или «ныряет» в ил. Правда, только в северных районах нахожде­ние его там продолжительно, в более южных местностях двигательная активность карася возобновляется уже при увеличении температуры воды на 3,5°С (февраль). Поэтому во время не слишком холодных зим в Украине, Казахстане и других регионах под­ледная ловля серебристого карася - обычное дело.

Появление ледового покрова вносит свои коррективы в поведение хищ­ных рыб. Различают такое разделе­ние хищников по отношению к свету: окунь считается сумеречно-дневным хищником, щука - сумеречным, судак - глубокосумеречным.
Осенью окуни и щуки питаются кру­глосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и пресле­дуют жертв. «Сумеречное» питание хищников происходит при освещен­ности от сотен до десятых долей люк­сов (вечером) и наоборот (утром). Судак может пользоваться зрением в тех условиях, когда другие рыбы ви­деть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент - гуанин, который увеличива­ет ее чувствительность. Охота судака за мелкими стайными рыбами наи­более успешна при глубоко сумереч­ной освещенности - 0,001 и 0,0001 лк (практически полная темнота).

В сумерках и в предутренние часы у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные обо­ронительные стаи рыб-жертв начинают распадаться, обеспечивая удач­ную охоту хищникам. С наступлением темноты отдельные рыбешки рассре­доточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и за­мирают. Охота хищных рыб на это время прекращается.

В начале зимы ситуация подо льдом меняется. Полутьма «на руку» именно сумеречным хищникам, которые в первые дни установления ледового покрова устраивают деморализо­ванным жертвам «варфоломеевскую ночь». Хищным рыбам уже не надо распределять время своей охоты на раннее утро и вечерние часы. Так на­чинается и продолжается (обычно не очень долго) знаменитый жором хищ­ника «перволедок».
Кстати, зимой резко снижается ре­акция рыб-жертв на угрозу, верховки и уклейки намного слабее реагируют на «запах страха», выделяемый товар­ками при схватывании их хищником.

При поиске хищника на обширных водоемах совсем необязательно ис­кать его на ямах и в коряжниках. На­много чаще его можно обнаружить близ участков льда, свободных от снега: слабый, рассеянный свет, про­никающий на глубину, на протяжении всей зимы привлекает столь любимых судаком уклейку и верховку.

Очищенные от снега участки льда привлекают также и молодь окуней, которая собирается у тускло освещен­ного места «твердой поверхности» во­доема через 15-20 минут. Подводные исследования показали, что влечение к слабому свету испытывают и взрос­лые окуни, которые подходят чуть позже молоди. Причем, в отличие от «недорослей», горбачи избегают осве­щенного участка и барражируют во­круг него в темноте.

Температура воды и поведение рыб.

Температура водной среды - самый значительный природный фактор, который прямо воздействует на уровень обмена веществ пойкилотермных (не­сколько неудачный термин-синоним - «холоднокровных») животных, к ко­торым относятся и рыбы.

Всех рыб по диапазону температур, при котором возможна их нормаль­ная жизнедеятельность, разделяют на теплолюбивых (плотва, сазан (карп), карась, линь, растительноядные виды (толстолобики, белый амур), осетро­вые и прочие) и холодолюбивых (ру­чьевая форель, сиги, лосось, налим и др.).

Обмен веществ у первых предста­вителей наиболее эффективен при высокой температуре. Они наиболее интенсивно питаются и активны при температуре +17-28°С, при пониже­нии температуры воды до +17°С их пищевая активность ослабевает (а зи­мой у многих видов вообще прекра­щается). Предзимье и всю зиму они проводят в малоподвижном состоянии в глубоких местах водоема.

Для холодолюбивых рыб оптимальные температуры +8-16°С. Зимой они активно питаются, а их нерест проис­ходит в осенне-зимний период.

Известно, что к похолоданию и снижению температуры воды рыба «привыкает», перестраивая свой ме­таболизм только за 17-20 суток. При снижении температуры воды с +12°С до +4°С у хариуса, например, вели­чины энергозатрат уменьшаются на 20%.
С понижением температуры воды увеличивается растворимость кисло­рода, поэтому зимой насыщенность воды кислородом достаточно высо­ка.

При длительном понижении темпе­ратуры воды рыбы должны располагать не только достаточным запасом жира как энергетического материала, но и в течение этого периода сохра­нить нормальный обмен веществ.

Рыболовная стратегия зимой.

Почитателей зимней рыбалки в отдельных регионах СНГ порой больше, чем летних любителей порыбачить. Несмотря на непредсказуемые ка­призы погоды и порой необъяснимое отсутствие клева подводных оби­тателей, зимой возможна отличная рыбалка. Следует только четко пред­ставлять, «просчитывать» ситуацию на конкретном водоеме. Надо знать, что на протяжении зимы как минимум 20-35 видов рыб (в разных водоемах по-разному) продолжают интенсив­но откармливаться, порой не взирая даже на перепады атмосферного дав­ления.

Естественно, для каждого конкрет­ного вида нужен свой, особый под­ход, который обязательно принесет удачу рыболову - экспериментатору при наличии у него определенного рыболовного опыта, знания особен­ностей поведения рыб в этот период года и, конечно же, страстного желания поймать свой трофей!..

Русская народная традиция - купаться в проруби в Крещенье, 19 января, привлекает все больше и больше людей. В этом году в Петербурге были организованы 19 прорубей, называемых «купель» или «иордань». Проруби были хорошо оснащены деревянными мостками, везде дежурили спасатели. И интересно, что, как правило, купающиеся люди говорили журналистам, что они очень довольны, вода теплая. Я сама не купалась зимой, но знаю, что вода в Неве действительно, по данным измерений была + 4 + 5 °С, что значительно теплее температуры воздуха - 8 °С.

Тот факт, что температура воды подо льдом на глубине в озерах и реках выше нуля на 4 градуса известен многим, но, как показывают обсуждения на некоторых форумах, не все понимают причину этого явления. Иногда повышение температуры связывают с давлением толстого слоя льда над водой и изменением в связи с этим температуры замерзания воды. Но большинство людей, успешно изучавших физику в школе, уверенно скажут, что температура воды на глубине связана с известным физическим явлением - изменением плотности воды с температурой. При температуре +4°С пресная вода приобретает свою наибольшую плотность .

При температурах вблизи 0 °С вода становится менее плотной и более легкой. Поэтому при охлаждении воды в водоёме до +4 °С прекращается конвекционное перемешивание воды, дальнейшее её охлаждение происходит только за счет теплопроводности (а она у воды не очень высокая) и процессы охлаждения воды резко замедляются. Даже в лютые морозы, в глубокой реке под толстым слоем льда и слоем холодной воды всегда будет вода с температурой +4 °С. До дна промерзают лишь мелкие пруды и озера.

Мы решили разобраться, почему при охлаждении вода ведет себя так странно. Оказалось, что исчерпывающее объяснение этому явлению еще не найдено. Существующие гипотезы не нашли пока экспериментального подтверждения. Надо сказать, что вода — не единственное вещество, имеющее свойство расширяться при охлаждении. Подобное поведение характерно также для висмута, галлия, кремния и сурьмы. Однако именно вода вызывает наибольший интерес, поскольку является веществом, очень важным для жизнедеятельности человека и всего растительного и животного мира.

Одна из теорий - существование в воде двух типов наноструктур высокой и низкой плотности, которые изменяются с температурой и порождают аномальное изменение плотности. Ученые, изучающие процессы переохлаждения расплавов, выдвигают следующее объяснение. При охлаждении жидкости ниже температуры плавления внутренняя энергия системы уменьшается, подвижность молекул снижается. В то же самое время усиливается роль межмолекулярных связей, за счет которых могут формироваться разнообразные надмолекулярные частицы. Опыты ученых с переохлажденным жидким о_терфенилом позволили предположить, что в переохлажденной жидкости со временем может образовываться динамическая «сетка» из более плотно упакованных молекул. Эта сетка разделяется на ячейки (области). Молекулярные переупаковки внутри ячейки задают скорость вращения молекул в ней, а более медленная перестройка самой сетки приводит к изменению этой скорости во времени. Что-то подобное может происходить и в воде.

В 2009 г. японский физик Масакадзу Мацумото, используя компьютерное моделирование, выдвинул свою теорию изменения плотности воды и опубликовал ее в журнале Physical Review Letters (Why Does Water Expand When It Cools?) («Почему вода при охлаждении расширяется?»). Как известно, в жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют тетраэдральный угол, равный 109,47 градуса.

Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, препятствуют такому объединению, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами. В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

На рисунке шесть типичных витритов, образующих внутреннюю структуру воды. Шарики соответствуют молекулам воды, отрезки между шариками обозначают водородные связи. Рис. из статьи Masakazu Matsumoto, Akinori Baba, and Iwao Ohminea.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами, некоторые витриты принимают структурно неравновесные конфигурации, которые позволяют всей системе в целом получить наименьшее значение энергии среди возможных. Такие назвали фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом. Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры, по мнению ученых, вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты,преобладает, что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Это объяснение основано пока только на компьютерном моделировании. Экспериментально его очень трудно подтвердить. Исследование интересных и необычных свойств воды продолжается.

Источники

О.В. Александрова, М.В. Марченкова, Е.А. Покинтелица «Анализ термических эффектов, характеризующих кристаллизацию переохлажденных расплавов» (Донбасская национальная академия строительства и архитектуры)

Ю. Ерин. Предложена новая теория, объясняющая, почему вода при нагревании от 0 до 4°C сжимается (

Как известно, сильно сказывается на поведении рыбы, особенно когда оно резко падает: рыба в таких случаях чувствует себя плохо, кормится меньше или совсем перестает. Правда, она может несколько улучшить свое самочувствие, поднимаясь к поверхности воды или опускаясь на дно.

Этим частично объясняется тем, что один и тот же вид рыбы мы в разное время ловим в разных слоях воды. Однако если атмосферное давление нормальное, то это вовсе не значит, что будет обеспечен улов, так как на поведение рыбы влияют и другие факторы. Колебания атмосферного давления рыба испытывает зимой , подо льдом. Более того, зимой давление сказывается даже сильнее, чем летом - ведь в это время рыба ослаблена недостатком кислорода в воде и оскудением кормовой базы. Поэтому зимой клев менее устойчив, чем летом.

Следует учесть, что давление в 760 мм ртутного столба, которое многие рыболовы принимают за оптимальное, для рыб благоприятно только на море или на уровне моря - там такое давление нормально. В других случаях оптимальным атмосферным давлением считается 760 мм минус высота местности над уровнем моря: на каждые 10 м подъема приходится 1 мм падения ртутного столба. Так, если вы собираетесь ловить в местности, которая на 100 м выше уровня моря, то расчет должен быть такой: 760-100/10=750.

И еще одно замечание: если давление долго скакало: было то выше нормального, то ниже - нельзя ждать, что клев станет хорошим сразу же после установления нормального - необходимо, чтобы оно стало устойчивым.

Температура воды летом

Изменяется медленно, значительно отстает от изменений температуры воздуха. Поэтому к таким колебаниям рыба успевает привыкнуть и они обычно на поведение не влияют.

Кроме того, изменение температуры воды на разные виды рыб действует неодинаково. Так, если она понижается, то карасю, сазану, карпу, линю это не нравится, активность же налима, форели и хариуса возрастает. Работники рыболовных хозяйств давно заметили: в холодное лето они со своих голубых нив снимают урожай меньше обычного.

Это объясняется тем, что с понижением средней температуры воды снижается интенсивность обмена веществ у рыб. Ухудшается и клев. И наоборот, повышение температуры воды в определенных пределах ведет к улучшению обмена веществ, а значит, и к улучшению клева.

Температура воды зимой

Не изменяется, поэтому споры удильщиков, скажем, о том, хорошо или плохо лещ клюет в сильные морозы, беспредметны. Дело в том, что подо льдом колебания температуры воздуха не заметны. Удильщик должен знать, что около нижней плоскости льда температура воды всегда одинакова, примерно 0 градусов.

Если она хотя бы на несколько десятых долей градуса будет ниже 0, то толщина льда увеличивается, он нарастает. Если же стоит оттепель, толщина льда обычно не увеличивается. Верхний слой волы всегда имеет положительную температуру, притом чем ближе ко дну, тем она выше, однако более 4 градусов не бывает. Таким образом, изменения температуры воздуха зимой на температуру воды не влияют, значит, не влияют они и на поведение рыбы.

Активность большинства рыб зимой снижается, но не одинаково. Вот что показали, например, опыты, проведенные в дельте Волги. Жерех зимой все время кормится, держится на тех же местах, что и летом - там, где течение быстрое. У судака активность значительно снижена, питается он нерегулярно, иногда залегает в ямы.

Неплохой уловчик!

Еще больше изменений происходит в образе жизни леща: зимой он испытывает угнетение жизненных процессов, однако в глубокое оцепенение не впадает. У сазана зимой угнетены основные жизненные процессы, в это время он малоподвижен, плотными скоплениями почти полного оцепенения. Сом, видимо, бывает близок к анабиозу. Порой ему начинает угрожать удушье из-за недостатка кислорода, но и тогда он не делает попыток уйти в другой район водоема и часто гибнет.

Ветер

Некоторые рыболовы считают ветер причиной своих неудач. Среди них часто идут разговоры, что ветер такого-то направления благоприятствует ловле, а при другом клева не будет. Например, многие считают, что при северном ветре наступает бесклевье. Однако летом, в сильную жару такой ветер благоприятствует ловле: он охлаждает воздух, воздух - воду, и рыба начинает вести себя активнее. Таких противоречий набирается много, и напрашивается вывод: ветер не влияет на поведение рыб .

Ученые тоже так считают, и вот почему. Как известно, ветер - это перемещение воздуха из-за неравномерного распределения атмосферного давления по земной поверхности. Массы воздуха передвигаются в направлении от высокого давления к низкому. Чем больше разность давления в том или ином районе, тем быстрее движется воздух и, стало быть, сильнее ветер. Для рыбы имеет значение не направление ветра и его скорость, а другое: он изменяет атмосферное давление - ведет к повышению его или, наоборот, к понижению

Поэтому можно сказать, что ветер - не причина плохого клева, а примета, которая в определенной местности и в определенное время года может помочь рыболову.

Щука на крючке

Но ветер все же влияет на поведение рыбы, хотя совсем не так, как об этом думают некоторые удильщики: не прямо, а косвенно. Он может привести к волнению воды, а волны оказывают на рыбу прямое механическое воздействие. Например, во время сильных волнений морская рыба в большинстве случаев опускается в более глубокие слои воды, где тихо. На речную и озерную рыбу сильно влияет волнение воды в прибрежных участках.

Многие удильщики, наверное, замечали, что если летом на берег подует сильный ветер, клев ухудшается и может совсем прекратиться. Объясняется это тем, что стоящая вблизи берега рыба отходит в глубину. В такое время хороший клев может быть у противоположного берега, где тихо и рыба чувствует себя спокойно. Здесь собирается много верховой рыбы - она приходит, чтобы полакомиться насекомыми, которых ветер может сдуть на воду. Однако если он, хотя и дует к берегу, но не очень сильный, а дно илистое, к берегу тоже подойдет рыба и ловля здесь может стать успешной. Объясняется это тем, что волна вымывает из донного грунта корм.

По различным причинам в некоторых водоемах летом не хватает кислорода, и рыбу это угнетает, что особенно сказывается в тихую погоду. В Азовском море, например, в штиль могут даже возникнуть летние заморы, приводящие к гибели донной рыбы. Если же подует ветер, безразлично какого направления, начинается перемещение воды, вода получит достаточное количество кислорода - и рыба начнет вести себя активно, начнет клевать.

Атмосферные осадки

Могут влиять на поведение рыбы, но совсем не так, как об этом пишут некоторые авторы. Например, утверждения о том, что, якобы, если пошел снег, то станет активно клевать плотва, а если начал накрапывать дождь, то жди хорошего улова окуня, не имеют под собой никакой почвы.

Эти сообщения объясняются тем, что снегопад и дождь обычно бывают связаны изменением атмосферного давления, а оно-то и оказывает влияние на поведение рыбы. Снег может повлиять, видимо, лишь в одном случае - если он покроет первый, прозрачный лед: рыба перестанет пугаться удильщика и начнет клевать более уверенно.

Правда, дождь может вызвать помутнение воды, а это влияет по-разному. Если помутнение значительное, жабры у рыбы засоряются и она чувствует угнетение. Если же помутнение небольшое, рыба может подойти к берегу в поисках корма, который смывают с берега рожденные дождем ручьи. Какого-то другого влияния атмосферные осадки на рыбу обычно не оказывают. Так что их, как ветер, можно отнести к приметам, а не к причинам.

Слух

Иные удильщики, чтобы не спугнуть рыбу, на берегу или в лодке разговаривают шёпотом, а другие не придают значения даже ударам веслом по борту лодки, удилищем по воде, поленом по берегу. Можно с уверенностью сказать, что у них неправильное представление о том, как рыба слышит, как в воде распространяется звук.

Углы слуха рыбы

Конечно, разговор удильщиков, сидящих в лодке или на берегу, рыба слышит очень плохо. Это объясняется тем, что звук почти полностью отражается от поверхности воды, так как плотность ее очень отличается от плотности воздуха и граница между ними для звука почти непреодолима. Но если звук исходит от предмета, который соприкасается с водой, рыба слышит его хорошо. По этой причине звук удара пугает рыбу. Хорошо слышит она и раздающиеся в воздухе резкие звуки, например выстрел, пронзительный свист.

Зрение

Зрение у рыб развито слабее, чем у наземных позвоночных: большинство видов различает предметы только в пределах 1-1,5 м, а максимально, видимо, не более 15 метров. Однако поле зрения у рыб очень широкое, они способны охватывать большую часть окружающей среды.

Обоняние

У рыб развито исключительно сильно, но различные виды рыб различные вещества воспринимают по-разному. Удильщикам известны многие вещества, положительно действующие на рыб, и потому добавление их в растительные насадки увеличивает количество поклевок. Таковы применяемые в ничтожно малых дозах конопляное, льняное, подсолнечное, укропное, анисовое и другие масла, настойки валерианы, ваниль и т.д. Но если применить большую дозу, скажем, масла, то можно и насадку испортить, и отпугнуть рыбу.

На месте ловли нельзя бросать в воду помятую или раненую рыбу, потому что она, как установили ученые, выделяет особое вещество, которое отпугивает рыб, служит как бы сигналом опасности. Такие же вещества выделяет и жертва в момент захвата ее хищником.

При ловле эти вещества могут попасть на руки, с них на леску или насадку, что тоже может распугать стаю. Поэтому на рыбалке надо аккуратно обращаться с добычей, чаще мыть руки.

Вкус

У рыб тоже хорошо развит, что подтверждено многими научными опытами советских и зарубежных ихтиологов. У большинства животных органы вкуса расположены в пасти. Не такова рыба. Некоторые виды могут определять вкус, например, поверхностью кожи, притом любым ее участком. Другие используют для такой цели усы, удлиненные лучи плавников. Это объясняется тем, что рыба живет в воде и вкусовые вещества имеют для нее значение не только тогда, когда попадают в рот - они помогают, скажем, ориентироваться в водоеме.

Свет

Различно влияет на рыбу. Давно замечено, что налим подходит к берегу, на котором ночью разведен костер, что лещ любит держаться в той части акватории, которая освещена лунным светом. Есть рыбы, которые отрицательно реагируют на свет, например, сазан. Промысловики этим воспользовались: с помощью света они выгоняют его из неудобных для лова мест - закоряженных участков пруда.

В различное время года, в различном возрасте один и тот же вид рыбы по-разному относится к свету. Например, молодой гольян прячется от света под камни - это помогает ему спасаться от врагов. Во взрослом же состоянии ему этого не требуется. Несомненно, что рыба во всех случаях реагирует на свет приспособительно: и тогда, когда она избегает его, чтобы не быть замеченной хищником, и в тех случаях, когда идет на свет в поисках корма.

Ловля сазана в ночное время

Несколько особняком стоит вопрос о влиянии лунного света. Нельзя сказать, что Луна не оказывает никакого влияния на рыбу. Ведь чем лучше освещенность водоема, тем выше активность рыб, ориентирующихся на пищу при помощи зрения. Если Луна на ущербе, то до Земли доходит мало света, а в полнолуние - больше. Сказывается и место нахождения Луны: если она у горизонта, то свет на Землю падает под очень острым углом - и освещенность слабая. Если же Луна в зените (свет падает прямо), то освещенность водоема повышается. При хорошей же освещенности рыба легче находит корм. Хищникам это помогает в поисках добычи, а про верховку известно, что при снижении освещенности она потребляет корма меньше.

Сильно сказывается влияние Луны на поведении морской рыбы. Это и понятно: здесь играет роль не только освещенность, а и вызванные Луной приливы и отливы, которых во внутренних водоемах почти не бывает. Хорошо известно, что в приливы рыба подходит к берегу в поисках корма и что некоторые рыбы нерестятся именно в это время.

Условные рефлексы

У рыбы вырабатываются так же, как и у других позвоночных животных. Необходимые в этом случае раздражители могут быть самыми разными.

Сколько раз удильщики замечали, что на редко посещаемых озерах, на речках протекающих где-либо в глухих местах, рыба клюет уверенно. На тех же водоемах, на которые часто приезжают удильщики, наученная рыба ведет себя очень осторожно. Поэтому здесь стараются вести себя особенно тихо, лески привязывают потоньше, а способы ловли применяют те, при которых рыбе труднее заметить подвох.

Интересны опыты, проведенные голландским ученым Ж. Ж. Бейкамом. Запустив карпов в пруд, он затем несколько дней непрерывно вылавливал их удочкой. Каждого пойманного карпа ихтиолог метил и сразу же отпускал. При подведении результатов эксперимента выяснилось, что самым удачным днем был первый, на второй и третий день дела шли хуже, а на седьмой и восьмой день карпы вообще перестали клевать.

Карп в воде

Значит, у них выработались условные рефлексы, они стали умнее. Продолжая эксперимент, голландец пустил в пруд карпов, которые еще не побывали на крючке. Через год меченные карпы попадались в три-четыре раза реже, чем необученные. Значит, даже спустя год условные рефлексы еще действовали.

Нерест

Очень важное событие в жизни рыб. У каждого вида он происходит лишь при определенных условиях,в присущее ему время. Так, сазану, карпу, лещу необходима спокойная вода и свежая растительность. Для других же рыб, например лососевых, нужны быстрые течения и плотный грунт.

Обязательным условием нереста всех рыб является определенная температура воды. Однако она устанавливается не каждый год в одно и то же время. Потому и нерест порой происходит то несколько раньше обычного, то несколько позже. Похолодание может задержать нерест, а ранняя весна, наоборот, ускорить. Большая часть видов рыб нерестится весной или в начале лета, и только некоторые - осенью, а налим даже зимой.

Опытный рыболов обращает внимание не столько на шкалу термометра, сколько на то, что он наблюдает в природе. Ведь все явления, которые в ней происходят, теснейшим образом связаны друг с другом. Приметы, проверенные временем, не подводят. Так, давно известно, что язь начинает нереститься, когда у березы набухают почки, а окунь и плотва - когда листья березы пожелтеют. Среднего размера лещ нереститься, когда зацветает черемуха, а крупный - когда заколосится рожь. Если зацветает бузина и груша, значит, начинает нереститься марена (усач). Сом нереститься во время цветения шиповника, а сазан - одновременно с цветением ириса.

Перед нерестом рыба набирает сил и активно кормится. Так бывает всегда почти у всех видов. После нереста она восстанавливает силы и тоже активно кормится, но начинается это не сразу, а некоторое время спустя. Продолжительность посленерестового отдыха не одинакова у всех видов. Некоторые кормятся даже во время нереста, в особенности, если он затянулся.

Суточный и годичный ритм питания

Особенность жизни рыб, которую удильщикам необходимо знать: это обеспечивает успех. Вот к каким выводам пришли ихтиологи, например, в результате летних наблюдений на Цимлянском водохранилище, где они изучали суточный ритм питания леща. Оказалось, что в десять часов вечера он не кормился, а лишь переваривал корм, в два часа ночи его кишечник был пустым. Кормиться лещ начал только около четырех часов утра.

Состав корма менялся в зависимости от освещенности: чем она выше, тем больше в кишечнике обнаруживали мотылей. С ухудшением освещенности в корме преобладали моллюски - они менее подвижны и крупнее, поэтому их легче обнаружить в темноте. Напрашивается вывод: на глубоком месте, где утром освещенность наступает позже, а вечером заканчивается раньше, чем на мелководье, лещ и клевать начинает позже, а оканчивает раньше.

Конечно, это относится не только к лещу, но и к другим рыбам, а в первую очередь к тем, которые ищут корм главным образом при помощи зрения. У тех же видов, которые ориентируются на пищу преимущественно по запаху, освещенность водоема имеет меньшее значение. Можно сделать и другой вывод: в том водоеме, где вода прозрачная, клев наступает раньше, чем там, где она темная или мутная. Конечно, и у других видов рыб суточный ритм питания очень тесно связан с поведением кормовых организмов. Вернее, от их поведения в значительной степени зависит не только ритм питания, но и состав корма.

Ритмика в питании есть как у хищных рыб, так и у мирных. Разница в их ритмике объясняется видом корма. Скажем, вобла кормится примерно каждые 4 часа, а у хищников перерывы могут быть очень продолжительными: дело в том, что хищнику необходимо, чтобы желудочный сок растворил чешую жертвы, а на это уходит много времени.

Имеет значение и температура воды: чем она ниже, тем дольше длится процесс пищеварения. Значит, зимой переваривание пищи длится дольше, чем летом, а потому и клевать хищник будет хуже, чем летом.

Количество потребленного за день корма, как и годовой рацион, зависит от его качества: чем он калорийнее, тем в меньшем количестве требуется. Значит, если корм питательный, рыба быстро утоляет голод, а если наоборот,то кормежка растягивается. Сказывается и количество корма в водоеме: в бедных рыба кормится более продолжительное время, чем в водоемах с богатой кормовой базой. Интенсивность потребления корма находится и в тесной связи с состоянием рыбы: упитанная потребляет корма меньше, чем худая. Суточный ритм питания рыбы в одном году может быть совсем иным, чем в следующем или предыдущем.

Есть три основных способа зимовки карпов: в отапливаемом помещении, сооружение отапливаемой крытой конструкции и в открытом водоёме, часто подо льдом. Последний способ может показаться наиболее простым и не требующим подготовки, но понимание происходящих подо льдом процессов поможет верно провести зимовку.

Грамотное проведение зимовки поможет рыбам быстро восстановиться ранней весной, после самого опасного сезона года.

Одна из немногих вещей, которую мы не можем контролировать в открытом водоёме, — температуру воды. Разумеется, если нет дорогостоящей системы обогрева. Однако природа позаботилась об этом и подготовила механизмы, приспосабливающие карпов к холодной среде. Работа человека заключается в том, чтобы создать для рыбы максимально подходящие условия. Главным образом они сводятся к тому, чтобы повторить естественные процессы в природных водоёмах. Важный фактор холодной зимовки — замерзание водоёма.

Зимой лёд служит барьером между водой и окружающей средой: резкими колебаниями температур, переохлаждением воды, холодным ветром и кислотностью снега. Бороться со льдом во время зимы — ошибка, доставляющая беспокойство рыбам. Лёд можно удалять весной во время оттепели, чтобы вода прогревалась быстрее. Снег на люду также полезен. Просто забудьте о водорослях или растениях, которые перестанут получать солнечный свет и производить кислород — за насыщение декоративного водоёма должен отвечать аэратор. Важно только чтобы растения сами не оказались во льду. Действительно, не видеть любимую рыбу несколько недель или даже два-три месяца в году может быть нелегко. Но для кои это естественный и безопасный способ зимовки. Рассмотрим происходящие в водоёме процессы после охлаждения воды.

Вода состоит из двух атомов водорода и одного атома кислорода (H2O). Между молекулами воды есть связи, за счёт которых она растекается по поверхности, а не рассыпается как ртуть. Во время испарения водородные связи между молекулами рвутся и образует пар. При переходе воды в твёрдое состояние молекулы упорядочиваются, образуя кристаллическую решётку.

При снижении температуры воды до слабо отрицательного значения −0,15°C вода меняет агрегатное состояние из жидкостного на кристаллическое. Любая вода не замерзает одинаково — на процесс влияют такие факторы, как химический состав и давление. Дистиллированная вода не замерзает при слабо отрицательной температуре потому, что в ней нет центров кристаллизации — микроскопических взвешенных частиц, вокруг которых формируются кристаллы. При 0 °C и отсутствии дополнительной тепловой энергии (например тёплый воздух) вода сохраняет агрегатное состояние. В таком случае одинаковый объём льда будет плавать в жидкости, а система сохранит равновесие. Значение 0 в шкале Цельсия принято как температура фазы перехода воды из одного состояния в другое. В открытом водоёме постоянно происходят изменения, поскольку идеальных температурных условий 0 °C здесь не бывает.

Что влияет на физические процессы в водоёме при отрицательной температуре воздуха?

Для появления льда достаточно, чтобы поверхностная плёнка охладилась на десятые доли градуса. Обязательная механическая взвесь в любом водоёме с рыбой становится одной из точек замерзания, вокруг которой формируется лёд.

Мелкие водоёмы на поверхности земли промерзают с двух сторон: сверху, из-за холодного воздуха и снизу, когда промёрзнет грунт. Глубокие стоячие заполненные водоёмы, дно которых ниже глубины промерзания, могут промёрзнуть сверху до глубины промерзания грунта. Быстрые реки Восточной Сибири промерзают от основания — из-за постоянного перемешивания воды лёд не успевает образовываться на поверхности и закрепляется на дне. Поверх гальки и валунов формируются быстро растущие кристаллы, иногда до 1 м высотой за сутки.

После образования поверхностной плёнки от краёв водоёма к центру лёд растет вниз, за счет более интенсивного роста некоторых кристаллов. Лёд имеет меньшую плотность и теплопроводность, чем жидкость. Это полезное для рыб свойство.

Термоклин — это слой воды, температура которого резко отличается от температуры других слоёв. Например, когда летом нагревается поверхностный слой, а на дне вода остаётся холодной. Зимой также есть термоклин.

При охлаждении воды увеличивается её плотность. При температуре воды 4 °C у неё максимальная плотность и она опускается ниже более холодной воды. В озёрах и глубоких прудах тёплая вода на дне создаёт зону, которая позволяет пережить рыбам самые суровые зимы. Для формирования такой области необходима такая глубина и объём воды, который не позволяет ей перемешиваться охлаждаясь. Говоря о зимовке, слои воды обычно вспоминают в связи с работой насосов, ведь они могут их перемешивать и охлаждать водоём.

В обычном декоративном водоёме глубиной 1-1,5 метра зимнего температурного расслаивания воды может не происходить: для её перемешивания сверху вниз достаточно ветра. Мелкий замкнутый водоём, например без притока тёплой грунтовой воды, продолжает охлаждается со стороны льда и грунта. Это похоже на то, как замерзает в морозильнике кубик воды, — со всех сторон сразу. Если глубина водоёма равна глубине промерзания, весь его объём превратится в лёд.

Кои зимой находятся на дне, прежде всего следуя природным инстинктам, а не опускаясь к тёплой воде. В водоёме глубиной 50 см они всё равно будут опускаться на дно. Также они становятся менее подвижными и экономят силы.

Естественное утепление водоёма

Форма водоёма и несложные конструкции естественным образом защищают водоём от переохлаждения.

Перед строительством пруда нужно узнать глубину промерзания почвы в вашей климатической зоне — от этого зависит минимальная безопасная для рыб глубина водоёма. Глубину промерзания почвы в вашем поясе должны знать питомники садовых растений и строители, специализирующиеся на фундаментах. Знать глубину промерзания нужно потому, что на этой линии грунта температура земли может быть около 0 °C. Под ней земля остаётся температурой около 1,5 °C, зачастую выше. Если вы сами измеряете температуру промерзания почвы, найдите отметку, где она не опускается ниже 4-4,5 °C. Эта глубина дополнительно утеплит водоём.

Глубина водоёма должна быть минимум на 1 м больше глубины промерзания. В особенно холодных зонах можно утеплить грунт на 1,5-2 м вокруг водоёма. Реальная глубина промерзания часто отличается от номинального значения. Если конструкция расположена рядом с отапливаемым зданием, его фундамент будет подогревать верхнюю часть грунта. Лёд и снег — естественные теплоизоляторы, которые препятствуют промерзанию грунта вглубь. Реальная глубина промерзания грунта может быть меньше номинальной на 20-40%. Учитывайте, что стенки водоёма — дополнительный утеплитель, который поддерживает температуру поверхности дна водоёма выше 1,5 °C. Также защищает водоём укрытый снегом кустарник вокруг него.

Для зимовки рыб в надземном водоёме учитывайте, что отсутствие естественных утеплителей приводит к большему охлаждению. Надземные бассейны в холодных регионах лучше использовать в тёплое время года или в качестве ёмкостей в закрытых помещениях.

Для защиты гидроизоляционной плёнки от повреждения льдом на поверхности можно оставлять наполовину заполненные водой пластиковые бутылки. На 1 кв. м. нужна приблизительно одна бутылка, которая уменьшает нагрузку на края. (?)

Также чем выше солёность, тем ниже температура замерзания. Оставляя на зиму водоём с солоноватой воды вы рискуете сделать её слишком холодной для карпов.

Биологическая фильтрация

Универсального совета, отключать биофильтр зимой или нет, дать нельзя, поскольку зима — слишком общее в данном случае понятие. Нитрификацию в водоёмах осуществляют одновременно десятки видов бактерий, главным образом Nitrosomonas и Nitrobacter, оптимальная температура для развития которых 15-35 °C. Скорость нитрификации растёт с повышением температуры и снижается в воде теплее +35 °C в связи с уменьшением растворённого в воде кислорода. Хотя некоторые штаммы Nitrosomonaseuropea могут развиваться при +4 °C, в целом нитрификация замедляется при +9 °C и обычно прекращается при +6 °C.

Кроме температуры, на интенсивность нитрификации влияет pH, кислотность, концентрация аммиака, количество бактерий, скорость течения воды, концентрация кислорода и углекислого газа и многое другое. Используя эти факторы, специально созданные для холодного климата промышленные системы продолжают устранять аммиак при +0,2-0,5 °C. При +5 °C может продолжаться денитрификация. Аммиак рыбы выделяют постоянно, вне зависимости от того питается рыба или нет. Но при отсутствии кормления в очищенном от органических остатков водоёме, в котором нет перенаселения уровень аммиака не должен перейти критическую отметку.

О кормлении карпов кои зимой читайте .

Инфекции в холодной воде: риск сохраняется

Карп — теплолюбивая рыба. С понижением температуры уменьшается интенсивность обмена веществ и активность иммунной системы. Некоторые микроорганизмы активны в холодной воде и представляют опасность для рыб.

Весенняя виремия карпа — вирусное заболевание карповых, в наиболее острой форме протекающее при температуре 11-17 °C. При 5-10 °C от инфекции может погибнуть 100% больных рыб. Продолжительная зимовка при низкой температуре снижает устойчивость рыб к заболеванию. Возбудитель заболевания проникает в поверхностные слои кровеносных сосудов и вызывает отток элементов крови в окружающие ткани и полости. Опасность весенней веремии заключается также в том, что она может становиться основой для других распространённых бактериальных заболеваний — аэромоноза и псевдомоноза.

Аэромоноз и псевдомоноз. Заболевания со схожими признаками вызывают бактерии двух родов. Просторечное название «краснуха» появилась в силу характерных признаков — приподнятой чешуи и точечных кровоподтёков на теле и глазных яблоках. Неполноценное или недостаточное кормление рыб осенью, слабая упитанность, травмы, — и рыбе становится труднее сопротивляться патогенным бактериям. Перенаселение и плохая очистка водоёма осенью также способствуют их развитию. Бактерии рода Aeromonas всё ещё активны при 5 °C, и могут проникать в организм через ослабленный зимним голоданием кишечник. Вспышки вызванных бактериями Pseudomonas заболеваний приходятся обычно на вторую половину зимовки — с января по март. Бактерии Pseudomonas могут развиваться при низких температурах, до 2 °C.

Аммиак и нитриты

Даже если оставить биофильтр включённым зимой, в холодной воде он становится неэффективным. Но рыба выделяет аммиак круглый год, и хотя весной его уровень проверять принято, ведь биофильтр ещё не запущен, зимой аммиак проверяют редко. Но почему, ведь зимой биофильтр не работает вообще?

Под общим названием «аммиак» понимают два вещества — ионизированную форму аммоний (NH4) и свободный аммиак (NH3). Большинство тестов показывают общее содержание аммиака и не разделяют их на формы. Наиболее опасен свободный аммиак — именно его имеют в виду говоря об аммиачных отравлениях. Эти вещества переходят одно в другое — присоединяя ион водорода аммиак превращается аммоний, а отдавая его возвращается в первоначальную форму. Преобладание в воде той или другой формы определяет одновременно pH и температура воды. Опасность свободного аммиака возникает при концентрации 0,05 мг/л, поэтому определить его концентрацию исходя из обычного теста совсем нелегко.

При снижении температуры воды концентрация NH3 уменьшается — см. табл. Зная pH воды и глядя на таблицу, вы можете увидеть, при какой температуре можно начинать проверять аммиак.

Таблица: Мольная доля азота аммиака в общем содержании аммонийного азота в воде в зависимости от pH и температуры при минерализации 0,5 г/дм³

Нитриты менее опасны, чем аммиак. Также, при слабой активности нитрифицирующих бактерий и замедленном метаболизме рыб, шансы отравления нитритами небольшие. Зимой можно подменивать воду, особенно если вас беспокоит уровень нитритов.

Гипотермия

Как и другие животные, карпы страдают от гипотермии. Гипотермия, или переохлаждение — это снижение температуры организма до критической отметки, ниже чем нужно для его нормального функционирования. На опасность гипотермии одновременно влияет температура охлаждения, его скорость и продолжительность. Устойчивость рыбы к переохлаждению зависит от её состояния — возраста, наличия жировых отложений. Предельно низкая температура, при которой возможно восстановление функций организма называется «биологическим нулём». Это ещё обратимый процесс.

Низкие температуры приводят к замедлению дыхания, частоты сердечных сокращений, падению интенсивности обмена веществ, кровяного давления. Затем угнетается работа нервной системы — наступает холодовый наркоз. В крови уменьшается содержание сахара. Особенно чувствительна к падению сахара нервная система, в которой отсутствуют запасы гликогена, и со временем в нервных клетках возникают необратимые изменения.

При длительной гипотермии начинается аутолиз (саморастворение клеток), приводящий к смерти сначала отдельных клеток и затем всего организма. Главной причиной смерти рыб при переохлаждении считается тканевая гипоксия (кислородное голодание) и необратимые изменения в нервной системе.

В рыбоводческих хозяйствах адаптированные к холодному климату карпы нормально зимуют при температуре до 0,5 °C. Для неприспособленных к суровому климату декоративных кои, часто выращиваемых в закрытых бассейнах, такая температура может стать смертельной.

Спячка или оцепенение

Оптимальная температура для карпа 15-30 °C. Это сильная рыба, которая приспособилась к холодной зимовке, хотя она ей и не нужна. В холодной воде карпы находятся у дна и мало двигаются. Это естественный защитный механизм, который помогает им сохранять энергию для долгой зимовки. С понижением температуры воды замедляется обмен веществ и, как следствие, — потребность в питании. Поскольку в сезон роста карп постоянно передвигается именно в поисках пищи, всю зиму он может оставаться почти на одном месте. Снижение интенсивности обмена веществ и другие адаптации для зимовки происходят не за один день — именно поэтому так важны в водоёме постепенные изменения параметров воды. Рыба может выдерживать значительные изменения окружающей среды, если достаточно времени приспособиться.

Когда вода охлаждается до 7 °C, кои становятся значительно менее активными. С дальнейшим снижением температуры они впадают в оцепенение, или торпор. Оцепенение, в отличие от настоящей зимней спячки, продолжается от нескольких до десятков часов. При этом рыба воспринимает внешние раздражители и может на них реагировать. Поскольку нервная деятельность в оцепенении не прекращается, рыба может быть и физически активной, например, медленно перемещаясь вдоль дна. С повышением температуры воды рыба может продолжить питаться, хоть и не так активно, как летом.

Поскольку обмен веществ в таком состоянии замедляется, важно не допускать стрессовых ситуаций, которые в нормальном состоянии рыба преодолевает с помощью гормонов. Адреналин позволяет рыбе мгновенно уйти с одного места, прочь от опасности. В холодной воде реакции рыбы заторможены и стресс становится особенно опасным. Вылов и транспортировку рыбы зимой, осмотр нужно проводить особенно аккуратно.



Рекомендуем почитать

Наверх