Способы выплавки меди. Особенности меди: ее состав, структура и технология производства

Уход за волосами 18.03.2019
Уход за волосами

Медь - один из важнейших металлов, относится к I – й группе Периодической системы; порядковый номер 29; атомная масса – 63,546; плотность – 8,92 г/см 3 . температура плавления – 1083 °С; температура кипения – 2595 °С. По электро­проводности она несколько уступает лишь серебру и является главным проводниковым материалом в элект­ро- и радиотехнике, потребляющих 40…50 % всей меди. Почти во всех областях машиностроения используются медные сплавы - латуни и бронзы. Медь как легирую­щий элемент входит в состав многих алюминиевых и других сплавов.

Мировое производство меди в капиталистических странах около 6-7 млн. т, в том числе вторичной меди около 2 млн. т. В СССР выплавка меди за каждое пя­тилетие увеличивался на 30…40 %.

Медные руды. Медь встречается в природе главным образом в виде сернистых соединений CuS (ковеллин), Cu 2 S (халькозин) в со­ставе сульфидных руд (85…95 % запасов), реже в виде окисных соединений Сu 2 О (куприт), углекислых соединений СuСО 3 · Сu(ОН) 2 - малахит 2СuСО 3 · Сu(ОН) 2 - азурит и само­родной металлической меди (очень редко). Окисные и углекислые соединения трудно поддаются обогащению и перерабатываются гидрометаллургическим способом.

Наибольшее промышленное значение в СССР имеют сульфидные руды, из которых получают около 80 % всей меди. Самыми распространенными сульфидными рудами являются медный колчедан, медный блеск и др.

Все медные руды являются бедными и обычно содер­жат 1…2 %, иногда меньше 1 % меди. Пустая порода, как правило, состоит из песчаников, глины, известняка, сульфидов железа и т. п. Многие руды являются ком­плексными - полиметаллическими и содержат, кроме меди, никель, цинк, свинец и другие ценные элементы в виде окислов и соединений.

Примерно 90 % первичной меди получают пирометаллургическим способом; около 10 %-гидрометаллур­гическим способом.

Гидрометаллургический способ состоит в извлечении меди путем ее выщелачивания (например, слабыми рас­творами серной кислоты) и последующего выделения металлической меди из раствора. Этот способ, применя­емый для переработки бедных окисленных руд, не по­лучил широкого распространения в нашей промышлен­ности.

Пирометаллургический способ состоит в получении меди путем ее выплавки из медных руд. Он включает обогащение руды, ее обжиг, плавку на полупродукт - штейн, выплавку из штейна черной меди, ее рафиниро­вание, т. е. очистку от примесей (рис. 2.1).

Рис. 2.1. Упрощенная схема пирометаллургического производства меди

Наиболее широко для обогащения медных руд при­меняется метод флотации. Флотация основана на раз­личном смачивании водой металлсодержащих частиц и частиц пустой породы (рис. 2.2).


Рис. 2.2. Схема флотации:

а – принципиальная схема механической флотационной машины (вариант);

б – схема всплывания частиц; 1 – мешалка с лопастями; 2 – перегородка;

3 – схема минерализованной пены; 4 – отверстие для удаления хвосты

(пустой породы); I – зона перемешивания и аэрации.

Обогащение медных руд . Бедные медные руды под­вергают обогащению для получения концентрата, содер­жащего 10…35 % меди. При обогащении комплексных руд возможно извлечение из них и других ценных эле­ментов.

В ванну флотационной машины подают пульпу - суспензию из воды, тонкоизмельченной руды (0,05…0,5 мм) и специальных реагентов, образующих на поверхности металлсодержащих частиц пленки, не сма­чиваемые водой. В результате энергичного перемеши­вания и аэрации вокруг этих частиц возникают пузырь­ки воздуха. Они всплывают, извлекая с собой металл­содержащие частицы, и образуют на поверхности ванны слой пены. Частицы пустой породы, смачиваемые водой, не всплывают и оседают на дно ванны.

Из пены фильтруют частицы руды, сушат их и полу­чают рудный концентрат, содержащий 10…35 % меди. При переработке комплексных руд применяют селектив­ную флотацию, последовательно выделяя металлсодер­жащие частицы различных металлов. Для этого подби­рают соответствующие флотационные реагенты.

Обжиг. Рудные концентраты, достаточно богатые медью, плавят на штейн «сырыми» - без предваритель­ного обжига, что снижает потери меди (в шлаке - при плавке, унос - с пылью при обжиге); основной недоста­ток: при плавке сырых концентратов не утилизируется сернистый газ SO 2 , загрязняющий атмосферу. При об­жиге более бедных концентратов удаляется избыток се­ры в виде SO 2 , который используется для производства серной кислоты. При плавке получают достаточно богатый медью штейн, произво­дительность плавильных пе­чей увеличивается в 1,5…2 раза.

Обжиг производят в вер­тикальных многоподовых цилиндрических печах (диа­метр 6,5…7,5 м, высота 9…11 м), в которых измельчен­ные материалы постепенно перемещаются механически­ми гребками с верхнего пер­вого пода на второй - ниже расположенный, затем на третий и т. д. Необходимая температура (850 °С) обес­печивается в результате го­рения серы (CuS, Cu 2 S и др.). Образующийся сернистый газ SO 2 направляется для производства серной кислоты.

Производительность печей невысокая - до 300 т ших­ты в сутки, безвозвратный унос меди с пылью около 0,5 %.

Новым, прогрессивным способом является обжиг в кипящем слое (рис. 2.3).

Сущность этого способа состо­ит в том, что мелкоизмельченные частицы сульфидов окисляются при 600…700 °С кислородом воздуха, посту­пающего через отверстия в подине печи. Под давлением воздуха частицы обжигаемого материала находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий» («псевдоожиженный») слой. Обожженный материал «переливается» через порог пе­чи. Отходящие сернистые газы очищают от пыли и на­правляют в сернокислотное производство. При таком обжиге резко повышается интенсивность окисления; производительность в несколько раз больше, чем в много­подовых печах.

Плавка на штейн . Плавку на штейн концентрата наиболее часто проводят в пламенных печах, работаю­щих на пылевидном, жидком или газообразном топливе. Такие печи имеют длину до 40 м, ширину до 10 м, пло­щадь подины до 250 м 2 и вмещают 100 т и более пере­плавляемых материалов. В рабочем пространстве печей развивается температура 1500…1600 °С.

При плавке на подине печи постепенно скапливается расплавленный штейн - сплав, состоящий в основном из сульфида меди Cu 2 S и сульфида железа FeS. Он обычно содержит 20…60 % Сu, 10…60 % Fe и 20…25 % S. В расплавленном состоянии (t Пл -950…1050 °C) штейн поступает на переработку в черновую медь.

Плавку концентратов производят также в электропечах, в шахт­ных печах и другими способами. Технически совершенная плавка в электропечах (ток проходит между электродами в слое шлака) на­шла ограниченное применение из-за большого расхода электроэнергии. Медные кусковые руды с повышенным содержанием меди и серы часто подвергают медносерной плавке в вертикальных шахтных пе­чах с воздушным дутьем. Шихта состоит из руды (или брикетов), кокса и других материалов. Выплавляемый бедный штейн с 8…15 % Сu обогащают повторной плавкой до 25…4 % Сu, удаляя избыток железа. Эта плавка экономически выгодна, так как из печных газов улавливают до 90 % элементарной серы руды.

Черновую медь вы­плавляют путем продув­ки расплавленного штей­на воздухом в горизон­тальных цилиндрических конверторах (рис. 2.4) с основной футеровкой (магнезит) с массой плавки до 100 т. Конвер­тор установлен на опор­ных роликах и может по­ворачиваться в требуемое положение. Воздушное дутье подается через 40- 50 фурм, расположенных вдоль конвертора.

Через горловину конвертора заливают рас­плавленный штейн. При этом конвертор поворачивают так, чтобы не были залиты воздушные фурмы. На поверхность штейна через горловину или специальное пневматическое устройство загружают песок - флюс для ошлакования окислов железа, образующихся при про­дувке. Затем включают воздушное дутье и поворачивают конвертор в рабочее положение, когда фурмы находятся ниже уровня расплава. Плотность штейна (5г/см 3) зна­чительно меньше удельного веса меди (8,9 г/см 3). Поэто­му в процессе плавки штейн доливают несколько раз: пока не будет использована вся емкость конвертора, рассчитанная на выплавляемую медь. Продувка воздухом продолжается до 30 ч. Процесс выплавки черновой меди из штейна делится на два периода.

В первом периоде происходит окисление FeS кис­лородом воздушного дутья по реакции

2FeS + ЗО 2 = 2FeO + 2SO 2 + Q.

Образующаяся закись железа FeO ошлаковывается кремнеземом SiO 2 флюса:

2FeO + SiO 2 = SiO 2 ∙2FeO + Q.

По мере необходимости образующийся железистый шлак сливают через горловину (поворачивая конвер­тор), доливают новые порции штейна, загружают флюс и продолжают продувку. К концу первого периода же­лезо удаляется почти полностью. Штейн состоит в ос­новном из Cu 2 S и содержит до 80 % меди.

Шлак содержит до 3 % Сu и его используют при плав­ке на штейн.

Во втором периоде создаются благоприятные усло­вия для протекания реакций

2Cu 2 S + ЗО 2 = 2Cu 2 O + 2SO 2 +Q;

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 - Q,

приводящих к восстановлению меди.

В результате плавки в конверторе получается черно­вая медь. Она содержит 1,5…2 % примесей (железа, ни­келя, свинца и др.) и не может быть использована для технических надобностей. Плавку меди выпускают из конвертора через горловину, разливают на разливочных машинах в слитки (штыки) или плиты и направляют на рафинирование.

Рафинирование меди - ее очистку от примесей - проводят огневым и электролитическим способом.

Огневое рафинирование ведут в пламенных печах емкостью до 400 т. Его сущность состоит в том, что цинк, олово и другие примеси легче окисляются, чем са­ма медь, и могут быть удалены из нее в виде окислов. Процесс рафинирования состоит из двух периодов - окислительного и восстановительного.

В окислительном периоде примеси частично окисляются уже при расплавлении меди. После полного расплавления для ускорения окисления медь продувают воздухом, подавая его через погруженные в жидкий ме­талл стальные трубки. Окислы некоторых примесей (SbO 2 , PbO, ZnO и др.) легко возгоняются и удаляются с печными газами. Другая часть примесей образует окис­лы, переходящие в шлак (FeO, Аl 2 О з, Si0 2). Золото и серебро не окисляются и остаются растворенными в меди.

В этот период плавки происходит также и окисление меди по реакции 4Cu+O 2 =2Cu 2 O.

Задачей восстановительного периода являет­ся раскисление меди, т. е. восстановление Сu 2 0, а так­же дегазация металла. Для его проведения окислитель­ный шлак полностью удаляют. На поверхность ванны насыпают слой древесного угля, что предохраняет ме­талл от окисления. Затем проводят так называемое дразнение меди. В расплавленный металл погружают сначала сырые, а затем сухие жерди (шесты). В результате су­хой перегонки древесины выделяются пары воды и га­зообразные углеводороды, они энергично перемешивают металл, способствуя удалению растворенных в нем газов (дразнение на плотность).

Газообразные углеводороды раскисляют медь, на­пример, по реакции 4Cu 2 O+CH 4 =8Cu+CO 2 +2H 2 O (дразнение на ковкость). Рафинированная медь содер­жит 0,3…0,6 % Sb и других вредных примесей, иногда до 0,1 % (Au+Ag).

Готовую медь выпускают из печи и разливают в слитки для прокатки или в анодные пластины для последующего электролитического рафинирования. Чистота меди после огневого рафинирования составляет 99,5 … 99,7 %.

Электролитическое рафинирование обеспечивает по­лучение наиболее чистой, высококачественной меди. Электролиз проводят в ваннах из железобетона и дере­ва, внутри футерованных листовым свинцом или винипластом. Электролитом служит раствор сернокислой ме­ди (CuSO 4) и серной кислоты, нагретый до 60…65 °С, Анодами являются пластины размером 1х1 м толщиной 40…50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5…0,7 мм), изго­товленные из электролитической меди.

Аноды и катоды располагают в ванне попеременно; в одной ванне помещают до 50 анодов. Электролиз ве­дут при напряжении 2…3 В и плотности тока 100… 150 А/м 2 .

При пропускании постоянного тока аноды постепенно растворяются, медь переходит в раствор в виде ка­тионов Си 2+ . На катодах происходит разрядка катионов Cu 2+ +2e → Cu и выделяется металлическая медь.

Анодные пластины растворяются за 20…30 суток. Катоды наращивают в течение 10…15 суток до массы 70…140 кг, а затем извлекают из ванны и заменяют но­выми.

При электролизе на катоде выделяется и растворяет­ся в меди водород, вызывающий охрупчивание металла. В дальнейшем катодную медь переплавляют в плавиль­ных печах и разливают в слитки для получения листов, проволоки и т. п. При этом удаляется водород. Расход электроэнергии на 1 т катодной меди составляет 200…400 кВт · ч. Электролитическая медь имеет чистоту 99,95 %. Часть примесей оседает на дне ванны в виде шлама, из которого извлекают золото, серебро и некото­рые другие металлы.

Конечной задачей металлургии меди, как и любого другого металлургического производства, является получение металлов из перерабатываемого сырья в свободном металлическом состоянии или в виде химического соединения. На практике эта задача решается с помощью специальных металлургических процессов, обеспечивающих отделение компонентов пустой породы от ценных составляющих сырья.

Получение металлической продукции из руд, концентратов или других видов металлосодержащего сырья - задача достаточно трудная. Она существенно усложняется для медных и никелевых руд, которые, как правило, являются сравнительно бедным и сложным по составу полиметаллическим сырьем. При переработке такого сырья металлургическими способами необходимо одновременно с получением основного металла обеспечить комплексное выделение всех других ценных компонентов в самостоятельные товарные продукты при высокой степени их извлечения. В конечном итоге металлургическое производство должно обеспечить полное использование всех без исключения компонентов перерабатываемого сырья и создание безотходных (безотвальных) технологий.

Как указывалось ранее, основная масса медных руд состоит из соединений меди, железа и пустой породы, поэтому конечная цель металлургической переработки этих руд сводится к получению металлургического продукта за счет полного удаления пустой породы, железа и серы (в случае переработки сульфидного сырья).

Для получения металлов достаточно высокой чистоты из сложного полиметаллического сырья с высокой степенью комплексности его использования не достаточно применить один металлургический процесс или один металлургический агрегат. Эта задача до настоящего времени реализуется в практических условиях использованием нескольких последовательно проводимых процессов, обеспечивающих постепенное разделение компонентов перерабатываемого сырья.

Весь комплекс применяемых металлургических процессов, подготовительных и вспомогательных операций формируется в технологическую схему участка, отделения, цеха или предприятия в целом. Для всех предприятий, занимающихся переработкой меди, характерны многоступенчатые технологические схемы.

В основе любого металлургического процесса лежит принцип перевода обрабатываемого сырья в гетерогенную систему, состоящую из двух, трех, а иногда и более фаз, которые должны отличаться друг от друга составом и физическими свойствами. При этом одна из фаз должна обогащаться извлекаемым металлом и обедняться примесями, а другие фазы, наоборот, обедняться основным компонентом. Различия некоторых физических свойств получающихся фаз (плотности, агрегатного состояния, смачиваемости, растворимости и т.п.) обеспечивают хорошее отделение их друг от друга простыми технологическими приемами, например, отстаиванием или фильтрацией.

Высокая степень комплексности использования сырья является основным и едва ли не самым важным требованием к современной технологии, причем она должна пониматься в самом широком смысле.

В понятие комплексности использования сырья должно включаться максимально высокое извлечение всех ценных составляющих руды: меди, никеля, цинка, кобальта, серы, железа, благородных металлов, редких и рассеянных элементов, а также использование силикатной части руды.

Перерабатываемые сульфидные руды и концентраты обладают достаточно высокой теплотворной способностью и являются не только источником ценных компонентов, но и технологическим топливом. Следовательно, в понятие комплексного использования сырья должно включаться и использование его внутренних энергетических возможностей.

Медные руды и концентраты имеют одинаковый минералогический состав, и отличаются лишь количественными соотношениями между различными минералами. Следовательно, физико-химические основы их металлургической переработки совершенно одинаковы.

Для переработки медьсодержащего сырья с целью получения металлической меди применяют как пиро-, так и гидрометаллургические процессы.

В общем объеме производства меди на долю пирометаллургических способов приходится около 85 % мирового выпуска этого металла.

Пирометаллургическая технология предусматривает переработку исходного сырья (руды или концентрата) на черновую медь с последующим ее обязательным рафинированием. Если принять во внимание, что основная масса медной руды или концентрата состоит из сульфидов меди и железа, то конечная цель пирометаллургии меди - получение черновой меди - достигается за счет практически полного удаления пустой породы, железа и серы.

Наиболее распространенная технология предусматривает обязательное использование следующих металлургических процессов: плавку на штейн, конвертирование медного штейна, огневое и электролитическое рафинирование меди.

В ряде случаев перед плавкой проводят предварительный окислительный обжиг сульфидного сырья. Обжиг применяется для частичного удаления серы и перевода сульфидов железа и других элементов в легко шлакуемые при последующей плавке оксиды. В результате обжига большая часть сульфидов переходит в оксиды, часть из которых в виде оксидов улетучивается.

Медные штейны, содержащие в зависимости от исходного рудного сырья и технологии переработки от 10…12 до 70…75% меди, преимущественно перерабатывают методом конвертирования.

Основная цель конвертирования - получение черновой меди за счет окисления железа и серы и некоторых других сопутствующих компонентов. Благородные металлы (серебро, золото), основная часть селена и теллура остаются в черновом металле.

Черновую медь выпускают в виде слитков массой до 1200 кг и анодов, которые идут на электролитическое рафинирование.

Рафинирование меди производят огневым и электролитическим способами.

Цель огневого рафинирования на предварительной (перед электрохимической) стадии производства сводится к частичной очистке меди от примесей, обладающих повышенным сродством к кислороду, и подготовке ее к последующему электролитическому рафинированию. Методом огневого рафинирования из расплавленной меди стремятся максимально удалить серу, кислород, железо, никель, цинк, свинец, мышьяк, сурьму и растворенные газы.

Для непосредственного технического применения черновая медь не пригодна, и поэтому ее обязательно подвергают рафинированию с целью очистки от вредных примесей и попутного извлечения благородных металлов, селена и теллура.

Небольшие включения (несколько частиц на миллион частиц меди) таких элементов как селен, теллур и висмут могут значительно ухудшить электропроводность и обрабатываемость меди - свойства, которые особенно важны для промышленности, производящей кабельнопроводниковую продукцию, являющейся крупнейшим потребителем рафинированной меди. Электролитическое рафинирование считается основным процессом, который позволяет получить медь, отвечающую наиболее жестким требованиям электротехники.

Сущность электролитического рафинирования меди заключается в том, что литые анод (отлитый, как правило, из меди огневого рафинирования) и катоды - тонкие матрицы из электролитной меди - попеременно завешивают в электролитную ванну, заполненную электролитом, и через эту систему пропускают постоянный ток.

В результате электролитического рафинирования предполагается получить медь высокой чистоты (99,90…99,99% Cu).

Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы - катодные основы.

Электролит - водный раствор сульфата меди (160…200 г/л) и серной кислоты (135…200 г/л) с примесями и коллоидными добавками, расход которых составляет 50…60 г/т Cu. Чаще всех в качестве коллоидных добавок используют столярный клей и тиомочевину. Они вводятся для улучшения качества (структуры) катодных осадков. Рабочая температура электролита - 50…55 oС.

При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

В результате электролитического рафинирования получают: катодную медь; шлам, содержащий благородные металлы; селен; теллур и загрязненный электролит, часть которого иногда используют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

Электролитическое рафинирование основано на различии электрохимических свойств меди и содержащихся в ней примесей.

Медь относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных сернокислых растворах.

Примеси по электрохимическим свойствам разделяют на четыре группы:

  • 1 группа - металлы более электроотрицательные, чем медь (Ni, Fe, Zn);
  • 2 группа - металлы, расположенные близко к меди в ряду напряжений (As, Sb, Bi);
  • 3 группа - металлы более электроположительные, чем медь (Au, Ag, платиновая группа);
  • 4 группа - электрохимически нейтральные химические соединения (Cu2S, Cu2Se, Cu2Te и др.).

Механизм электролитического рафинирования меди включает следующие элементарные стадии:

  • -электрохимическое растворение меди на аноде с отрывом электронов и образование катиона: Cu - 2е --> Cu2+;
  • -перенос катиона через слой электролита к поверхности катода;
  • -электрохимическое восстановление катиона меди на катоде: Cu2+ - 2e --> Cu;
  • -внедрение образовавшегося атома меди в кристаллическую решетку (рост катодного осадка).

Примеси первой группы, обладающие наиболее электроотрицательным потенциалом, практически полностью переходят в электролит. Исключение составляет лишь никель, около 5 % которого из анода осаждается в шлам в виде твердого раствора никеля в меди. По закону Нернста твердые растворы становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особенное поведение по сравнению с перечисленными группами примесей демонстрируют свинец и олово, которые по электрохимическим свойствам относятся к примесям 1 группы, но по своему поведению в процессе электролиза могут быть отнесены к примесям 3 и 4 групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS04 и метаоловянную кислоту H2Sn03.

Электроотрицательные примеси на катоде в процессе электролиза меди практически не осаждаются и постепенно накапливаются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно расстроиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений раствора или основных солей, особенно при их значительной концентрации в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зрения возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих сульфатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подвергаются гидролизу, образуя основные соли (Sb и Bi) или мышьяковистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков ("плавучий" шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек "плавучего" шлама. Таким образом, примеси 2 группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей 2 группы в электролите составляют, г/л: 9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (3 группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряжений должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5 % от его содержания в анодах, а серебра - более 98 %. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для уменьшения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество ионов хлора.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси 4 группы). Хотя, в принципе, химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специальных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99 % селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом.

Плотность тока является важнейшим параметром процесса электролиза. Плотность тока при электролизе обычно выбирают от 220…230 до 300 А/м2 площади катода, и общий расход энергоносителей составляет от 1800 до 4000 МДж/т анодов (электроэнергии 200…300 кВт*ч/т меди).

Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с подвижностью крупных катионов и сложных анионных комплексов.

В качестве катодной основы (матрицы) применяют в зависимости от системы электролиза тонкие медные, титановые и стальные листы. Аноды обычно отливают массой 250…360 кг. Продолжительность растворения анода от 20 до 28 суток.

В течение этого времени производят дватри съема катодов, масса каждого из которых составляет 100…150 кг. Катоды являются конечным продуктом электролитического рафинирования меди.

В процессе электролиза на поверхности катода могут образовываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстояния ведет к уменьшению электрического сопротивления, а, следовательно, к местному увеличению плотности тока. Последнее, в свою очередь, обусловливает ускоренное осаждение меди на дендрите и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом.

Катоды должны быть плотными, нехрупкими. На поверхности катода не должно быть дендритных наростов пористой меди. Допускается наличие наростов, вросших в тело катода, на катодах, изготовленных из меди марок М0ку, М0к иМ1к. Поверхность катодов и катодных ушек должна быть чистой, хорошо отмытой от электролита, и не должна иметь налета сульфатов меди и никеля.

Проблема внешнего вида и структурного состояния катода усложняет и удорожает технологию электрохимического рафинирования. В большинстве случаев катоды непосредственно непригодны для изготовления высококачественного проката. Поэтому заметную часть катодной меди заводы производители переплавляют в слитки, которые называют вайербарсами (заготовки для прокатки и волочения). По такой усложненной технологии получают безкислородную медь для изготовления тонкой проволоки.

Электролитическое рафинирование меди позволяет полностью извлекать золото, серебро, платиновые и редкие металлы (Se, Те, Bi и др.) и обеспечивает достаточно глубокую очистку от вредных примесей. Стоимость попутно извлекаемых спутников меди обычно перекрывает все затраты на рафинирование, поэтому этот процесс является очень экономичным.

Золото и серебро извлекают при переработке медных руд с большой полнотой и попутно с медью без организации специальных переделов (кроме необходимой переработки богатых электролизных шламов). Поэтому максимальное вовлечение в попутную переработку вместе с медными рудами золотосодержащего сырья (например, кварцитов) экономически очень эффективно и максимально используется.

Более 95 % выплавленной черновой меди в настоящее время подвергают двустадийному рафинированию. Вначале медь рафинируют огневым (окислительным) способом, а затем проводят электролиз. В отдельных случаях, когда медь не содержит благородных металлов, ее очистку ограничивают огневым рафинированием. Обычно достигаемая чистота меди после традиционного огневого рафинирования - 99,9 % Cu (мас.). Полученную в этом случае красную медь используют для проката на лист и для приготовления ряда сплавов.

  • -Возможны три варианта организации рафинирования черновой меди в промышленных условиях:
  • -Обе стадии рафинирования проводят на том же предприятии, где выплавляют черновую медь. В этом случае на огневое рафинирование медь поступает в расплавленном состоянии.
  • -Обе стадии рафинирования осуществляют на специальных рафинировочных заводах, на которые черновая медь поступает в слитках массой до 1500 кг. Такая технология требует повторного расплавления чернового металла, но позволяет на месте перерабатывать анодные остатки электролизного передела и технологический брак.

Огневое рафинирование жидкой черновой меди проводят на медеплавильных заводах, а электролиз анодов осуществляют централизованно на специальных предприятиях. Такой вариант рафинирования черновой меди характерен, в частности, для производства рафинированной меди в США.

Таким образом, двустадийная технология производства "огневое рафинирование - электролиз" позволит получить высококачественную продукцию - катодную медь, но наряду с этим она имеет ряд существенных ограничений. Основное ограничение связано с технико-экономическими показателями процесса, который ориентирован на использование первичной меди, получаемой из руды.

Наличие в руде драгоценных и редких металлов, их извлечение на стадии рафинирования обеспечивают приемлемую стоимость конечной продукции.

Если в материале, который идет на электролиз, содержание этих примесей мало или они вовсе отсутствуют, экономичность производства катодной меди становится проблематичной.

Увеличение мировых объемов произведенной меди, проблемы, возникающие с добычей и переработкой руды, привели к необходимости расширения использования огневого рафинирования как последнего технологического передела в производстве качественной меди.

В этом случае исходным сырьем будет являться не черновая медь, а вторичное медьсодержащее сырье. В результате огневого рафинирования необходимо получить не полупродукт (аноды), а готовую высококачественную медь, которая идет на изготовление требуемых заказчиком изделий.

Добиться принципиального изменения уровня примесей в меди огневого рафинирования невозможно без глубокого теоретического анализа возможностей окислительного рафинирования. Простое использование уже имеющихся технологических разработок в этой области невозможно из-за принципиальных отличий в составе исходного вторичного сырья. Главное отличие сырья, доступного в Украине, от аналогичного вторичного сырья других стран с развитой медеплавильной промышленностью заключается в значительной доле бытовых отходов и непрогнозируемом соотношении содержания различных примесей.

Медеплавильные заводы за рубежом используют более качественное вторичное сырье с узкими пределами изменения состава. Соответственно, требования к их технологическому процессу менее жесткие. Украинские предприятия работают на низкокачественном сырье, но применяемые технологии должны обеспечить получение такой же высококачественной меди и конкурентоспособной продукции из нее.

Медь, активно используемая практически во всех отраслях промышленности, добывается из различных руд, самой распространенной из которых является борнит. Популярность этой медной руды объясняется не только высоким содержанием меди в ее составе, но и значительными запасами борнита в недрах нашей планеты.

Месторождения медных руд

Медные руды – это скопление минералов, в которых, кроме меди, содержатся и другие элементы, формирующие их свойства, в частности никель. К категории медных причисляют те типы руд, в которых данного металла содержится такое количество, чтобы его было экономически целесообразно извлекать промышленными методами. Таким условиям удовлетворяют руды, содержание меди в которых находится в пределах 0,5–1%. Наша планета располагает запасом медесодержащих ресурсов, основную часть из которых (90%) составляют медно-никелевые руды.

Большая часть запасов медных руд в России находится в Восточной Сибири, на Кольском полуострове, в Уральском регионе. В списке лидеров по суммарным запасам таких руд находится Чили, также разрабатываются месторождения в следующих странах: США (порфировые руды), Казахстане, Замбии, Польше, Канаде, Армении, Заире, Перу (порфировые руды), Конго, Узбекистане. Специалисты подсчитали, что в крупных месторождениях всех стран меди суммарно содержится порядка 680 миллионов тонн. Естественно, вопрос о том, как добывают медь в различных странах, необходимо рассматривать отдельно.

Все месторождения медных руд делятся на несколько категорий, различающихся по генетическим и промышленно-геологическим характеристикам:

  • стратиформная группа, представленная медными сланцами и песчаниками;
  • руды колчеданного типа, к которым относятся самородная и жильная медь;
  • гидротермальные, включающие руды, называемые медно-порфировыми;
  • магматические, которые представлены наиболее распространенными рудами медно-никелевого типа;
  • руды скарнового типа;
  • карбонатовые, представленные рудами железомедного и карбонатитового типа.
В России осуществляется преимущественно на месторождениях сланцевого и песчаного типа, в которых руда содержится в медноколчеданной, медно-никелевой и медно-порфировой формах.

Природные соединения с содержанием меди

Чистая медь, которую собой представляют ее самородки, представлена в природе в очень незначительных количествах. В основном медь в природе присутствует в виде различных соединений, наиболее распространенными из которых являются следующие.

  • Борнит – минерал, получивший свое название в честь ученого из Чехии И. Борна. Это сульфидная руда, химический состав которой характеризует ее формула – Cu5FeS4. Борнит имеет и другие названия: пестрый колчедан, медный пурпур. В природе эта руда представлена в двух полиморфных видах: низкотемпературной тетрагонально-скаленоэдрической (температура меньше 228 градусов) и высокотемпературной кубически-гексаоктаэдрической (больше 228 градусов). Данный минерал может иметь различные виды и в зависимости от своего происхождения. Так, экзогенный борнит – это вторичный ранний сульфид, который очень неустойчив и легко разрушается при выветривании. Второй тип – эндогенный борнит – характеризуется непостоянством химического состава, в котором могут присутствовать халькозин, галенит, сфалерит, пирит и халькопирит. Теоретически минералы данных видов могут включать в свой состав от 25,5% серы, более 11,2% железа и свыше 63,3% меди, но на практике такое содержание этих элементов никогда не выдерживается.
  • Халькопирит – минерал, химический состав которого характеризуется формулой CuFeS2. Халькопирит, имеющий гидротермальное происхождение, раньше называли медным колчеданом. Наряду со сфалеритом и галенитом он входит в категорию полиметаллических руд. Данный минерал, который, кроме меди, содержит в своем составе железо и серу, формируется в результате протекания метаморфических процессов и может присутствовать в двух типах медных руд: контактово-метасоматического вида (скарны) и горные метасоматические (грейзены).
  • Халькозин – сульфидная руда, химический состав которой характеризуется формулой Cu2S. Такая руда содержит в своем составе значительное количество меди (79,8%) и серу (20,2%). Эту руду часто называют «медным блеском», что объясняется тем, что ее поверхность выглядит как отблескивающий металл, обладающий различными оттенками – от свинцово-серого до совершенно черного. В медесодержащих рудах халькозин выглядит как плотные или мелкозернистые включения.

В природе встречаются и более редкие минералы, которые содержат в своем составе медь.

  • Куприт (Cu2O), относящийся к минералам оксидной группы, часто можно встретить в местах, где есть малахит и самородная медь.
  • Ковеллин – сульфидная порода, сформированная метасоматическим путем. Впервые этот минерал, содержание меди в котором составляет 66,5%, был обнаружен в начале позапрошлого столетия в окрестностях Везувия. Сейчас ковеллин активно добывают на месторождениях в таких странах, как США, Сербия, Италия, Чили.
  • Малахит – минерал, хорошо известный всем как поделочный камень. Наверняка все видели изделия из этого красивейшего минерала на фото или даже являются их обладателями. Малахит, который в России очень популярен, – это углекислая медная зелень или дигидрококскарбонат меди, относящийся к категории полиметаллических медесодержащих руд. Найденный малахит свидетельствует о том, что рядом есть месторождения других минералов, содержащих медь. В нашей стране крупное месторождение этого минерала находится в районе Нижнего Тагила, раньше его добывали и на Урале, но сейчас его запасы там значительно истощены и не разрабатываются.
  • Азурит – минерал, который из-за своего синего цвета также называют «медной лазурью». Он характеризуется твердостью 3,5–4 единицы, основные его месторождения разрабатываются в Марокко, Намибии, Конго, Англии, Австралии, Франции и Греции. Азурит часто сращивается с малахитом и залегает в тех местах, где поблизости расположены месторождения медесодержащих руд сульфидного типа.

Технологии производства меди

Чтобы извлечь медь из минералов и руд, о которых мы говорили выше, в современной промышленности применяются три технологии: гидрометаллургическая, пирометаллургичекая и электролиз. Пирометаллургичекая методика обогащения меди, которая является самой распространенной, в качестве сырья использует халькопирит. Данная технология предполагает выполнение нескольких последовательных операций. На первом этапе производится обогащение медной руды, для чего используется окислительный обжиг или флотация.

Метод флотации основывается на том, что пустая порода и ее части, в которых содержится медь, смачиваются по-разному. При помещении всей массы породы в ванну с жидким составом, в котором формируются воздушные пузырьки, та ее часть, которая содержит в своем составе минеральные элементы, транспортируется этими пузырьками на поверхность, прилипая к ним. В итоге на поверхности ванны собирается концентрат – черновая медь, в котором данного металла содержится от 10 до 35%. Именно из такого порошкообразного концентрата и происходит дальнейшее .

Несколько иначе выглядит окислительный обжиг, с помощью которого обогащают медные руды, содержащие в своем составе значительное количество серы. Данная технология предусматривает нагрев руды до температуры 700–8000, в результате которого сульфиды окисляются и содержание серы в медной руде уменьшается практически в два раза. После такого обжига обогащенную руду расплавляют в отражательных или шахтных печах при температуре 14500, в результате чего получают штейн – сплав, состоящий из сульфидов меди и железа.

Свойства полученного штейна следует улучшить, для этого его обдувают в горизонтальных конвертерах без подачи дополнительного топлива. В результате такого бокового обдува железо и сульфиды окисляются, оксид железа переводят в шлак, а серу – в SO2.

Черновая медь, которая получается в результате такого процесса, содержит до 91% данного металла. Чтобы сделать металл еще чище, необходимо выполнить рафинирование меди, для чего из него необходимо удалить посторонние примеси. Это достигается при помощи технологии огневого рафинирования и подкисленного раствора медного купороса. Такое рафинирование меди называют электролитическим, оно позволяет получить металл с чистотой 99,9%.

Ковкостью называют восприимчивость металлов и сплавов к ковке и иным видам обработки давлением. Это может быть волочение, штамповка, прокатка либо прессование. Ковкость медихарактеризуется не только сопротивлением деформации, но и пластичностью. Что же такое пластичность? Это умение металла изменять свои контуры под давлением без разрушения. Ковкими металлами являются латунь, сталь, дюралюминий и некоторые иные медные, магниевые, никелевые, Именно у них высокий уровень пластичности совмещается с низким сопротивлением деформации.

Медь

Интересно, как выглядит характеристика меди? Известно, что это элемент 11 группы 4 периода системы химических элементов Д. И. Менделеева. Его атом имеет 29 номер и обозначается символом Cu. Фактически это переходный пластичный металл розовато-золотистого цвета. Кстати, он имеет розовый цвет, если оксидная плёнка отсутствует. С давних пор данный элемент используется людьми.

История

Одним из первых металлов, которые люди начали активно использовать в своём хозяйстве, является медь. Действительно, она слишком доступна для получения из руды и имеет малую температуру плавления. С давних пор человеческому роду известна семёрка металлов, в которую также входит и медь. В природе данный элемент встречается намного чаще, чем серебро, золото или железо. Древние предметы из меди, шлак, являются свидетельством её выплавки из руд. Они обнаружены при раскопках посёлка Чатал-Хююк. Известно, что в медный век получили большое распространение медные вещи. Во всемирной истории он следует за каменным.

С. А. Семёнов с сотрудниками проводил экспериментальные исследования, в которых выяснил, что медные орудия труда по сравнению с каменными выигрывают по многим параметрам. У них выше скорость строгания, сверления, рубки и распилки древесины. А обработка кости медным ножом длится столько же, сколько и каменным. А ведь медь считается мягким металлом.

Очень часто в древности вместо меди использовали её сплав с оловом - бронзу. Она необходима была для изготовления оружия и иных вещей. Итак, на смену медному веку пришёл бронзовый. Бронзу впервые получили на Ближнем Востоке за 3000 лет до н. э.: людям нравилась прочность и отличная ковкость меди. Из получаемой бронзы выходили великолепные орудия труда и охоты, посуда, украшения. Все эти предметы находят в археологических раскопках. Далее бронзовый век сменился железным.

Как получить медь можно было в древности? Первоначально её добывали не из сульфидной, а из малахитовой руды. Ведь в этом случае заниматься предварительным обжигом не было необходимости. Для этого смесь угля и руды помещали в глиняную посудину. Сосуд устанавливали в неглубокую яму и смесь поджигали. Далее начинал выделяться угарный газ, который способствовал восстановлению малахита до свободной меди.

Известно, что на Кипре уже в третьем тысячелетии до нашей эры были построены медные рудники, на которых и осуществлялась её выплавка.

На землях России и соседних государств медные рудники возникли за два тысячелетия до н. э. Их развалины находят и на Урале, и на Украине, и в Закавказье, и на Алтае, и в далёкой Сибири.

Промышленное плавление меди было освоено в тринадцатом веке. А в пятнадцатом в Москве был создан Пушечный двор. Именно там из бронзы отливали орудия различных калибров. Неимоверное количество меди уходило на изготовление колоколов. В 1586 году из бронзы была отлита Царь-пушка, в 1735 году - Царь-колокол, в 1782 году был создан Медный всадник. В 752 году мастера изготовили великолепную статую Большого Будды в храме Тодай-дзи. Вообще, список произведений литейного искусства можно продолжать бесконечно.

В восемнадцатом веке человек открыл электричество. Именно тогда огромные объёмы меди начали уходить на изготовление проводов и подобных им изделий. В двадцатом веке провода научились делать из алюминия, но медь в электротехнике всё ещё имела большое значение.

Происхождение названия

А вы знаете, что Cuprum - это латинское наименование меди, произошедшее от названия острова Кипр? Кстати, у Страбона медь величают халкосом - город Халкида на Эвбее виновен в происхождении такого имени. Большинство древнегреческих названий медных и бронзовых предметов произошли именно от этого слова. Они нашли широкое применение и в кузнечном ремесле, и среди кузнечных изделий и литья. Иногда медь называют Aes, что означает руду или рудник.

Славянское слово «медь» не имеет ярко выраженной этимологии. Возможно, оно старинное. Но оно весьма часто встречается в древнейших литературных памятниках России. В. И. Абаев предполагал, что это слово произошло от названия страны Мидия. Алхимики прозвали медь «Венера». В более древние времена её называли «Марс».

Где находят медь в природе?

Земная кора вмещает (4,7-5,5) х 10 -3 % меди (по массе). В речной и морской воде её намного меньше: 10 -7 % и 3 х 10 -7 % (по массе) соответственно.

В природе очень часто находят соединения меди. В промышленности используется халькопирит CuFeS 2 , именуемый , борнит Cu 5 FeS 4 , халькозин Cu 2 S. Одновременно люди находят и иные минералы меди: куприт Cu 2 O, азурит Cu 3 (CO 3) 2 (OH) 2 , малахит Cu 2 CO 3 (OH) 2 и ковеллин CuS. Очень часто масса отдельных скоплений меди достигает 400 тонн. Медные сульфиды образуются в основном в гидротермальных среднетемпературных жилах. Нередко и в осадочных породах можно отыскать медные месторождения - сланцы и медистые песчаники. Наиболее известными месторождениями являются в Забайкальском крае Удокан, Жезказган в Казахстане, Мансфельд в Германии и медоносный пояс Центральной Африки. Другие богатейшие месторождения меди расположены в Чили (Кольяуси и Эскондида) и США (Моренси).

На катоде образуется электролитическая медь, которая обладает высокой частотой около 99,99%. Предметы из меди полученной изготавливают самые разные: провода, электротехническое оборудование, сплавы.

Гидрометаллургический метод выглядит несколько по-иному. Здесь минералы меди растворяются в разведённой серной кислоте либо в аммиачном растворе. Из приготовленных жидкостей медь вытесняют железом металлическим.

Химические свойства меди

В соединениях медь показывает две степени окисления: +1 и +2. Первая из них тяготеет к диспропорционированию и устойчива лишь в нерастворимых соединениях либо комплексах. Кстати, соединения меди бесцветны.

Степень окисления +2 более устойчива. Именно она придаёт соли синий и сине-зелёный цвет. В непривычных условиях можно приготовить соединения со степенью окисления +3 и даже +5. Последнюю обычно находят в солях купраборанового аниона, полученных в 1994 году.

Чистая медь на воздухе не изменяется. Это слабый восстановитель, не вступающий в реакцию с разбавленной соляной кислотой и водой. Окисляется концентрированными азотной и серной кислотами, галогенами, кислородом, «царской водкой», оксидами неметаллов, халькогенами. При нагревании вступает в реакцию с галогеноводородами.

Если воздух влажный, медь окисляется, образуя основной карбонат меди (II). Она великолепно реагирует с холодной и горячей насыщенной серной кислотой, горячей безводной серной кислотой.

С разбавленной хлороводородной кислотой медь реагирует в присутствии кислорода.

Аналитическая химия меди

Все знают, что такое химия. Медь в растворе обнаружить несложно. Для этого необходимо платиновую проволочку смочить исследуемым раствором, а затем внести её в пламя бунзеновской горелки. Если в растворе присутствует медь, пламя будет окрашено в зелёно-голубой цвет. Необходимо знать, что:

  • Обычно количество меди в слабокислых растворах измеряется с помощью сероводорода: его смешивают с субстанцией. Как правило, при этом сульфид меди выпадает в осадок.
  • В тех растворах, где отсутствуют мешающие ионы, медь определяют комплексонометрически, ионометрически либо потенциометрически.
  • Малые количества меди в растворах измеряют спектральными и кинетическими методами.

Применение меди

Согласитесь, изучениемеди является весьма занимательной вещью. Итак, данный металл обладает низким удельным сопротивлением. Благодаря данному качеству медь используют в электротехнике для производства силовых и иных кабелей, проводов и иных проводников. Медные провода используются в обмотках силовых трансформаторов и электроприводов. Для создания вышеуказанных изделий металл подбирают очень чистый, так как примеси моментально снижают электрическую проводимость. И если в меди присутствует 0,02% алюминия, её электрическая проводимость снизится на 10%.

Вторым полезным качеством меди является великолепная теплопроводность. Благодаря данному свойству она применяется в различных теплообменниках, тепловых трубках, теплоотводных устройствах и компьютерных кулерах.

А где же используется твёрдость меди? Известно, что бесшовные медные трубы круглого сечения обладают замечательной механической прочностью. Они прекрасно выдерживают механическую обработку и применяются для перемещения газов и жидкостей. Обычно их можно встретить во внутренних системах газоснабжения, водоснабжения, отопления. Их широко используют в холодильных агрегатах и кондиционных системах.

Отличная твёрдость меди известна многим странам. Так, во Франции, Великобритании и Австралии медные трубы применяют для газоснабжения зданий, в Швеции - для отопления, в США, Великобритании и Гонконге - это основной материал для водоснабжения.

В России производство водопроводных и газовых медных труб нормируется стандартом ГОСТ Р 52318-2005, а федеральный Свод правил СП 40-108-2004 регулирует их применение. Трубы, выполненные из меди и её сплавов, активно используются в энергетике и судостроении для перемещения пара и жидкостей.

А вы знаете, что сплавы меди используются в разнообразных областях техники? Из них самыми известными считаются бронза и латунь. Оба сплава включают в себя колоссальное семейство материалов, в которое, помимо цинка и олова, могут входить висмут, никель и иные металлы. Например, пушечная бронза, использовавшаяся до девятнадцатого века для изготовления артиллерийских орудий, состояла из меди, олова и цинка. Её рецептура менялась в зависимости от места и времени изготовления орудия.

Всем известна отменная технологичность и высокая пластичность меди. Благодаря данным свойствам, неимоверное количество латуни уходит на производство гильз для оружия и артиллерийских боеприпасов. Примечательно, что автозапчасти изготавливают из сплавов меди с кремнием, цинком, оловом, алюминием и иными материалами. Медные сплавы отличаются высокой прочностью и при сохраняют свои механические свойства. Их устойчивость к износу определяется лишь химическим составом и его влиянием на структуру. Необходимо отметить, что данное правило не относится к бериллиевой бронзе и некоторым алюминиевым бронзам.

Медные сплавы имеют модуль упругости ниже, чем у стали. Основным их преимуществом можно назвать небольшой коэффициент трения, сочетающийся для большинства сплавов с высокой пластичностью, отличной электропроводностью и замечательным противодействием коррозии в агрессивной среде. Как правило, это бронзы алюминиевые и сплавы медно-никелевые. Они, кстати, нашли своё применение в парах скольжения.

Практически все медные сплавы имеют одинаковую величину коэффициента трения. Вместе с тем износостойкость и механические свойства, поведение в агрессивной среде напрямую зависят от состава сплавов. Пластичность меди используетсяв однофазных сплавах, а прочность - в двухфазных. Мельхиор (медноникелевый сплав) применяют для чеканки Медноникелевые сплавы, в том числе и «адмиралтейский», используются в судостроении. Из них изготавливают трубки для конденсаторов, очищающих турбинный отработанный пар. Примечательно, что турбины охлаждаются забортной водой. Медноникелевые сплавы обладают изумительной коррозионной устойчивостью, поэтому их стараются использовать в областях, связанных с агрессивным влиянием морской воды.

Фактически медь является важнейшей составляющей твёрдых припоев - сплавов, имеющих температуру плавления от 590 до 880 градусов Цельсия. Именно им присуща замечательная адгезия к большинству металлов, благодаря чему они применяются для прочного соединения различных металлических деталей. Это могут быть трубопроводная арматура или жидкостные реактивные двигатели, изготовленные из разнородных металлов.

А теперь перечислим сплавы, в которых ковкость меди имеет большое значение. Дюраль или дюралюминий является сплавом алюминия и меди. Здесь меди находится 4,4%. Сплавы меди с золотом часто используются в ювелирном деле. Они необходимы для повышения прочности изделий. Ведь чистое золото - весьма мягкий металл, который не может проявлять стойкость к механическим воздействиям. Изделия из чистого золота быстро деформируются и истираются.

Интересно, что для создания оксида иттрия-бария-меди используют оксиды меди. Он служит основой для изготовления высокотемпературных сверхпроводников. Медь также используют для производства батарей и медно-окисных

Иные сферы применения

А вы знаете, что медь очень часто употребляют как катализатор полимеризации ацетилена? Благодаря этому свойству медные трубопроводы, используемые для перемещения ацетилена, разрешено применять лишь тогда, когда содержание меди в них не превышает 64%.

Люди научились использовать ковкость меди и в архитектуре. Фасады и кровли, изготовленные из тончайшей листовой меди, служат безаварийно по 150 лет. Данный феномен объясняется просто: в медных листах происходит автозатухание процесса коррозии. В России используют медный лист для фасадов и кровель в соответствии с нормами Федерального Свода правил СП 31-116-2006.

В недалёком будущем люди планируют использовать медь в качестве бактерицидных поверхностей в клиниках для препятствования перемещению бактерий в помещениях. Все поверхности, к которым притрагивается рука человека, - двери, ручки, перила, водозапорная арматура, столешницы, кровати - специалисты будут изготавливать лишь из этого удивительного металла.

Маркировка меди

Какие марки меди использует человек для производства необходимых ему изделий? Их множество: М00, М0, М1, М2, М3. Вообще, марки меди идентифицируются чистотой её содержания.

Например, медь марок М1р, М2р и М3р содержит 0,04% фосфора и 0,01% кислорода, а марок М1, М2 и М3 - 0,05-0,08% кислорода. В марке М0б кислород отсутствует, а в МО его процентное содержание составляет 0,02%.

Итак, рассмотрим более подробно медь. Таблица, приведённая далее, предоставит более точную информацию:

Марка меди

Процентное

27 марок меди

Всего существует двадцать семь марок меди. Где же такое количество медных материалов использует человек? Рассмотрим данный нюанс подробнее:

  • Материал Cu-DPH используется для изготовления фитингов, необходимых для соединения труб.
  • АМФ нужен для создания горячекатаных и холоднокатаных анодов.
  • АМФу используют для производства холоднокатаных и горячекатаных анодов.
  • М0 нужен для создания проводников тока и высокочастотных сплавов.
  • Материал М00 используют для изготовления высокочастотных сплавов и проводников тока.
  • М001 применяют для изготовления проволоки, шин и иных электротехнических изделий.
  • М001б необходим для изготовления электротехнических изделий.
  • М00б используют для создания проводников тока, высокочастотных сплавов и аппаратов электровакуумной индустрии.
  • М00к - исходное сырьё для создания деформированных и литых заготовок.
  • М0б применяют для создания сплавов с высокой частотой.
  • М0к используют для производства литых и деформированных заготовок.
  • М1 нужен для изготовления проволоки и изделий криогенной техники.
  • М16 применяют для производства приборов электровакуумной индустрии.
  • М1Е необходим для создания холоднокатаных фольги и ленты.
  • М1к нужен для создания полуфабрикатов.
  • М1ор применяют для изготовления проволоки и иных электротехнических изделий.
  • М1р используют для изготовления электродов, применяемых для сварки чугуна и меди.
  • М1рЕ нужен для производства холоднокатаных ленты и фольги.
  • М1у используют для создания холоднокатаных и горячекатаных анодов.
  • М1ф нужен для создания ленты, фольги, горячекатаных и холоднокатаных листов.
  • М2 используют для изготовления добротных сплавов и полуфабрикатов на медной основе.
  • М2к используют для производства полуфабрикатов.
  • М2р необходим для изготовления прутков.
  • М3 нужен для изготовления проката, сплавов.
  • М3р используют для создания проката и сплавов.
  • МБ-1 необходим для создания бериллийсодержащих бронз.
  • МСр1 используют для изготовления электротехнических конструкций.

Металлы являются основным видом продукции металлургического производства. В цветной металлургии в зависимости от применяемой технологии и состава получающихся металлов различают черновые и рафинированные металлы. Товарной продукцией, поступающей к потребителю для дальнейшего использования по прямому назначению, как правило, являются рафинированные металлы.

Черновыми металлами называют металлы, загрязненные примесями. В меди и никеле могут присутствовать как вредные примеси, так и ценные элементы - спутники основного металла. Вредные примеси ухудшают характерные для данного металла свойства (электропроводность, пластичность, коррозионную стойкость и т. п.) и делают их непригодными для непосредственного использования. Наоборот, благородные металлы, селен, теллур, германий, индий, висмут и многие другие представляют самостоятельную ценность, и их необходимо попутно выделить в соответствующий продукт, что имеет большое экономическое значение. Черновые металлы обязательно подвергают очистке от примесей - рафинированию.

Качество черновых металлов в ряде случаев устанавливается отраслевыми стандартами или техническими условиями, которые регламентируют взаимоотношения между производителями чернового металла и заводами, на которые они поступают для рафинирования.

Конечной задачей металлургии меди, как и любого другого металлургического производства, является получение металлов из перерабатываемого сырья в свободном металлическом состоянии или в виде химического соединения. На практике эта задача решается с помощью специальных металлургических процессов, обеспечивающих отделение компонентов пустой породы от ценных составляющих сырья.

Получение металлической продукции из руд, концентратов или других видов металлосодержащего сырья - задача достаточно трудная. Она существенно усложняется для медных и никелевых руд, которые, как правило, являются сравнительно бедным и сложным по составу полиметаллическим сырьем. При переработке такого сырья металлургическими способами необходимо одновременно с получением основного металла обеспечить комплексное выделение всех других ценных компонентов в самостоятельные товарные продукты при высокой степени их извлечения. В конечном итоге металлургическое производство должно обеспечить полное использование всех без исключения компонентов перерабатываемого сырья и создание безотходных (безотвальных) технологий.

Как указывалось ранее, основная масса медных руд состоит из соединений меди, железа и пустой породы, поэтому конечная цель металлургической переработки этих руд сводится к получению металлургического продукта за счет полного удаления пустой породы, железа и серы (в случае переработки сульфидного сырья).

Для получения металлов достаточно высокой чистоты из сложного полиметаллического сырья с высокой степенью комплексности его использования не достаточно применить один металлургический процесс или один металлургический агрегат. Эта задача до настоящего времени реализуется в практических условиях использованием нескольких последовательно проводимых процессов, обеспечивающих постепенное разделение компонентов перерабатываемого сырья.

Весь комплекс применяемых металлургических процессов, подготовительных и вспомогательных операций формируется в технологическую схему участка, отделения, цеха или предприятия в целом. Для всех предприятий, занимающихся переработкой меди, характерны многоступенчатые технологические схемы.

В основе любого металлургического процесса лежит принцип перевода обрабатываемого сырья в гетерогенную систему, состоящую из двух, трех, а иногда и более фаз, которые должны отличаться друг от друга составом и физическими свойствами. При этом одна из фаз должна обогащаться извлекаемым металлом и обедняться примесями, а другие фазы, наоборот, обедняться основным компонентом. Различия некоторых физических свойств получающихся фаз (плотности, агрегатного состояния, смачиваемости, растворимости и т.п.) обеспечивают хорошее отделение их друг от друга простыми технологическими приемами, например, отстаиванием или фильтрацией.

Современный металлургический процесс должен обеспечивать:

  1. высокую степень комплексности использования перерабатываемого сырья;
  2. высокую удельную производительность металлургических аппаратов;
  3. минимальные энергетические затраты;
  4. максимальное использование вторичных энергоресурсов;
  5. использование простой, дешевой и удобной в работе, пуске, наладке и ремонте аппаратуры;
  6. высокую степень комплексной механизации и автоматизации;
  7. высокую производительность труда;
  8. безопасные и безвредные условия труда;
  9. устранение вредных выбросов в атмосферу;
  10. максимальную экономическую эффективность.

Высокая степень комплексности использования сырья является основным и едва ли не самым важным требованием к современной технологии, причем она должна пониматься в самом широком смысле.

В понятие комплексности использования сырья должно включаться максимально высокое извлечение всех ценных составляющих руды: меди, никеля, цинка, кобальта, серы, железа, благородных металлов, редких и рассеянных элементов, а также использование силикатной части руды.

Перерабатываемые сульфидные руды и концентраты обладают достаточно высокой теплотворной способностью и являются не только источником ценных компонентов, но и технологическим топливом. Следовательно, в понятие комплексного использования сырья должно включаться и использование его внутренних энергетических возможностей.

Медные руды и концентраты имеют одинаковый минералогический состав, и отличаются лишь количественными соотношениями между различными минералами. Следовательно, физико-химические основы их металлургической переработки совершенно одинаковы.

Для переработки медьсодержащего сырья с целью получения металлической меди применяют как пиро-, так и гидрометаллургические процессы.

В общем объеме производства меди на долю пирометаллургических способов приходится около 85 % мирового выпуска этого металла.

Пирометаллургическая технология предусматривает переработку исходного сырья (руды или концентрата) на черновую медь с последующим ее обязательным рафинированием. Если принять во внимание, что основная масса медной руды или концентрата состоит из сульфидов меди и железа, то конечная цель пирометаллургии меди - получение черновой меди - достигается за счет практически полного удаления пустой породы, железа и серы.

Получение меди в промышленных условиях может быть осуществлено несколькими путями (рис. 2.1).

На схеме, приведенной на рисунке, видно, что удаление железа и серы может производиться их окислением в три стадии (обжиг, плавка, конвертирование), в две стадии (плавка, конвертирование) или в одну стадию. За исключением последнего варианта, предусматривающего непосредственную плавку концентратов на черновую медь, технология ее получения характеризуется многостадийностью.

Наиболее распространенная технология предусматривает обязательное использование следующих металлургических процессов: плавку на штейн, конвертирование медного штейна, огневое и электролитическое рафинирование меди.

В ряде случаев перед плавкой проводят предварительный окислительный обжиг сульфидного сырья. Обжиг применяется для частичного удаления серы и перевода сульфидов железа и других элементов в легко шлакуемые при последующей плавке оксиды. В результате обжига большая часть сульфидов переходит в оксиды, часть из которых в виде оксидов улетучивается. Степень удаления некоторых элементов в процессе обжига, % (от их содержания в исходном сырье):

Рисунок 2.1.

Примечание: цифрами обозначены возможные варианты переработки исходного сырья на черновую медь.

Медные штейны, содержащие в зависимости от исходного рудного сырья и технологии переработки от 10…12 до 70…75% меди, преимущественно перерабатывают методом конвертирования.

Основная цель конвертирования - получение черновой меди за счет окисления железа и серы и некоторых других сопутствующих компонентов. Благородные металлы (серебро, золото), основная часть селена и теллура остаются в черновом металле.

Черновая медь, являющаяся конечным продуктом, обычно имеет химический состав, приведенный в табл. 2.1.

Таблица 2.1.

Таблица 2.2. Химический состав марок черновой меди, мас. %

Черновую медь выпускают в виде слитков массой до 1200 кг и анодов, которые идут на электролитическое рафинирование.

Рафинирование меди производят огневым и электролитическим способами.

Цель огневого рафинирования на предварительной (перед электрохимической) стадии производства сводится к частичной очистке меди от примесей, обладающих повышенным сродством к кислороду, и подготовке ее к последующему электролитическому рафинированию. Методом огневого рафинирования из расплавленной меди стремятся максимально удалить серу, кислород, железо, никель, цинк, свинец, мышьяк, сурьму и растворенные газы.

Для непосредственного технического применения черновая медь не пригодна, и поэтому ее обязательно подвергают рафинированию с целью очистки от вредных примесей и попутного извлечения благородных металлов, селена и теллура.

Небольшие включения (несколько частиц на миллион частиц меди) таких элементов как селен, теллур и висмут могут значительно ухудшить электропроводность и обрабатываемость меди - свойства, которые особенно важны для промышленности, производящей кабельнопроводниковую продукцию, являющейся крупнейшим потребителем рафинированной меди. Электролитическое рафинирование считается основным процессом, который позволяет получить медь, отвечающую наиболее жестким требованиям электротехники.

Сущность электролитического рафинирования меди заключается в том, что литые анод (отлитый, как правило, из меди огневого рафинирования) и катоды - тонкие матрицы из электролитной меди - по-переменно завешивают в электролитную ванну, заполненную электролитом, и через эту систему пропускают постоянный ток.

В процессе электролитического рафинирования решаются две основные задачи:

  • глубокая очистка меди от примесей;
  • попутное извлечение сопутствующих ценных компонентов.

Анодная медь является многокомпонентным сплавом и обычно имеет химический состав, приведенный в табл. 2.3.

Таблица 2.3.

В результате электролитического рафинирования предполагается получить медь высокой чистоты (99,90…99,99% Cu).

Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы - катодные основы.

Электролит - водный раствор сульфата меди (160…200 г/л) и серной кислоты (135…200 г/л) с примесями и коллоидными добавками, расход которых составляет 50…60 г/т Cu. Чаще всех в качестве коллоидных добавок используют столярный клей и тиомочевину. Они вводятся для улучшения качества (структуры) катодных осадков. Рабочая температура электролита - 50…55 o С.

При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом. На рис. 2.2. приведена схема процесса электролитического рафинирования.

Рисунок 2.2.

В результате электролитического рафинирования получают: катодную медь; шлам, содержащий благородные металлы; селен; теллур и загрязненный электролит, часть которого иногда используют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

Электролитическое рафинирование основано на различии электрохимических свойств меди и содержащихся в ней примесей.

Медь относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных сернокислых растворах.

Примеси по электрохимическим свойствам разделяют на четыре группы:

  • 1 группа - металлы более электроотрицательные, чем медь (Ni, Fe, Zn);
  • 2 группа - металлы, расположенные близко к меди в ряду напряжений (As, Sb, Bi);
  • 3 группа - металлы более электроположительные, чем медь (Au, Ag, платиновая группа);
  • 4 группа - электрохимически нейтральные химические соединения (Cu 2 S, Cu 2 Se, Cu 2 Te и др.).

Механизм электролитического рафинирования меди включает следующие элементарные стадии:

  1. электрохимическое растворение меди на аноде с отрывом электронов и образование катиона: Cu - 2е --> Cu 2+ ;
  2. перенос катиона через слой электролита к поверхности катода;
  3. электрохимическое восстановление катиона меди на катоде: Cu 2+ - 2e --> Cu;
  4. внедрение образовавшегося атома меди в кристаллическую решетку (рост катодного осадка).

Примеси первой группы, обладающие наиболее электроотрицательным потенциалом, практически полностью переходят в электролит. Исключение составляет лишь никель, около 5 % которого из анода осаждается в шлам в виде твердого раствора никеля в меди. По закону Нернста твердые растворы становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особенное поведение по сравнению с перечисленными группами примесей демонстрируют свинец и олово, которые по электрохимическим свойствам относятся к примесям 1 группы, но по своему поведению в процессе электролиза могут быть отнесены к примесям 3 и 4 групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS0 4 и метаоловянную кислоту H 2 Sn0 3 .

Электроотрицательные примеси на катоде в процессе электролиза меди практически не осаждаются и постепенно накапливаются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно расстроиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений раствора или основных солей, особенно при их значительной концентрации в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зрения возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих сульфатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подвергаются гидролизу, образуя основные соли (Sb и Bi) или мышьяковистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков ("плавучий" шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек "плавучего" шлама. Таким образом, примеси 2 группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей 2 группы в электролите составляют, г/л: 9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (3 группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряжений должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5 % от его содержания в анодах, а серебра - более 98 %. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для уменьшения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество ионов хлора.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси 4 группы). Хотя, в принципе, химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специальных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99 % селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом.

Плотность тока является важнейшим параметром процесса электролиза. Плотность тока при электролизе обычно выбирают от 220…230 до 300 А/м 2 площади катода, и общий расход энергоносителей составляет от 1800 до 4000 МДж/т анодов (электроэнергии 200…300 кВт*ч/т меди).

Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с подвижностью крупных катионов и сложных анионных комплексов.

В качестве катодной основы (матрицы) применяют в зависимости от системы электролиза тонкие медные, титановые и стальные листы. Аноды обычно отливают массой 250…360 кг. Продолжительность растворения анода от 20 до 28 суток.

В течение этого времени производят дватри съема катодов, масса каждого из которых составляет 100…150 кг. Катоды являются конечным продуктом электролитического рафинирования меди.

В процессе электролиза на поверхности катода могут образовываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстояния ведет к уменьшению электрического сопротивления, а, следовательно, к местному увеличению плотности тока. Последнее, в свою очередь, обусловливает ускоренное осаждение меди на дендрите и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом.

Катоды должны быть плотными, нехрупкими. На поверхности катода не должно быть дендритных наростов пористой меди. Допускается наличие наростов, вросших в тело катода, на катодах, изготовленных из меди марок М0ку, М0к иМ1к. Поверхность катодов и катодных ушек должна быть чистой, хорошо отмытой от электролита, и не должна иметь налета сульфатов меди и никеля.

Катоды из меди марок М00к во избежание загрязнения поверхности поставляют упаковаными в деревянные ящики или металлические контейнеры.

Размеры катодов в соответствии с ГОСТ 546 согласовываются между изготовителем и потребителем. Масса катода составляет от 50 до 120 кг и выше. Катоды содержат от 9 до 20 см 3 газов на 100 г вещества. Например, газосодержащие катоды меди марки М0к содержат, % (по массе) О 2 - 1…9*10 -3 ; Н 2 - 2…7, 5*10 -4 и N 2 - 0…7*10 -3 .

Проблема внешнего вида и структурного состояния катода усложняет и удорожает технологию электрохимического рафинирования. В большинстве случаев катоды непосредственно непригодны для изготовления высококачественного проката. Поэтому заметную часть катодной меди заводы производители переплавляют в слитки, которые называют вайербарсами (заготовки для прокатки и волочения). По такой усложненной технологии получают безкислородную медь для изготовления тонкой проволоки.

Электролитическое рафинирование меди позволяет полностью извлекать золото, серебро, платиновые и редкие металлы (Se, Те, Bi и др.) и обеспечивает достаточно глубокую очистку от вредных примесей. Стоимость попутно извлекаемых спутников меди обычно перекрывает все затраты на рафинирование, поэтому этот процесс является очень экономичным.

Золото и серебро извлекают при переработке медных руд с большой полнотой и попутно с медью без организации специальных переделов (кроме необходимой переработки богатых электролизных шламов). Поэтому максимальное вовлечение в попутную переработку вместе с медными рудами золотосодержащего сырья (например, кварцитов) экономически очень эффективно и максимально используется.

Возникает вопрос: почему при наличии в технологической схеме электролитического рафинирования, способного очистить медь от всех вредных примесей и извлечь ценные компоненты, включается дополнительно и огневое рафинирование? Практикой и экономическими расчетами однозначно доказано, что двустадийное рафинирование черновой меди обходится дешевле, чем ее прямая электролитическая очистка.

Связано это с меньшим выходом анодного скрапа, получением более богатых шламов, меньшим загрязнением электролита, меньшими расходами на электроэнергию и рядом других факторов, приводящих в итоге к меньшим общим затратам и более высокому извлечению в товарную продукцию как самой меди, так и ценных ее спутников. Одновременно это приводит к улучшению качества товарной меди.

Более 95 % выплавленной черновой меди в настоящее время подвергают двустадийному рафинированию. Вначале медь рафинируют огневым (окислительным) способом, а затем проводят электролиз. В отдельных случаях, когда медь не содержит благородных металлов, ее очистку ограничивают огневым рафинированием. Обычно достигаемая чистота меди после традиционного огневого рафинирования - 99,9 % Cu (мас.). Полученную в этом случае красную медь используют для проката на лист и для приготовления ряда сплавов.

Возможны три варианта организации рафинирования черновой меди в промышленных условиях:

  1. Обе стадии рафинирования проводят на том же предприятии, где выплавляют черновую медь. В этом случае на огневое рафинирование медь поступает в расплавленном состоянии.
  2. Обе стадии рафинирования осуществляют на специальных рафинировочных заводах, на которые черновая медь поступает в слитках массой до 1500 кг. Такая технология требует повторного расплавления чернового металла, но позволяет на месте перерабатывать анодные остатки электролизного передела и технологический брак.
  3. Огневое рафинирование жидкой черновой меди проводят на медеплавильных заводах, а электролиз анодов осуществляют централизованно на специальных предприятиях. Такой вариант рафинирования черновой меди характерен, в частности, для производства рафинированной меди в США.

Таким образом, двустадийная технология производства "огневое рафинирование - электролиз" позволит получить высококачественную продукцию - катодную медь, но наряду с этим она имеет ряд существенных ограничений. Основное ограничение связано с технико-экономическими показателями процесса, который ориентирован на использование первичной меди, получаемой из руды.

Наличие в руде драгоценных и редких металлов, их извлечение на стадии рафинирования обеспечивают приемлемую стоимость конечной продукции (см. рис. 2.1).

Если в материале, который идет на электролиз, содержание этих примесей мало или они вовсе отсутствуют, экономичность производства катодной меди становится проблематичной.

Например, в Украине катодную медь производит Константиновский металлургический завод (Донецкая область). В последнее время он снизил производство медных анодов на 18 % и при проектной мощности 2,4 тыс.т меди в год обеспечивает медью только собственное производство. Удовлетворить растущие потребности украинской промышленности в качественной меди он не в состоянии.

Имеются и другие ограничения, которые сдерживают расширение производства катодной меди в странах, не имеющих промышленных запасов медьсодержащих руд:

  • медь получают в твердом состоянии (катоды), что требует дополнительных энергетических затрат на производство конечной продукции.
  • необходимы исходные катодные матрицы - катанные полированные плиты толщиной 3…6 мм;
  • требуются значительные производственные площади для размещения электролизных ванн;
  • необходимы мощные водоочистные сооружения для регенерации и нейтрализации кислотного электролита;
  • увеличивается экологическая нагрузка на окружающую среду, загрязнение кислотными испарениями и другими вредными веществами и стоками.

Соответственно при разработке общей технологии получения качественной меди большее внимание приходилось уделять отладке технологии электролиза для обеспечения максимального извлечения ценных металлов, удаления вредных примесей, снижению техногенной нагрузки на окружающую среду. Технология огневого рафинирования рассматривалась как промежуточная, задача которой получить полупродукт (аноды) с примерно заданным составом.

Увеличение мировых объемов произведенной меди, проблемы, возникающие с добычей и переработкой руды, привели к необходимости расширения использования огневого рафинирования как последнего технологического передела в производстве качественной меди.

В этом случае исходным сырьем будет являться не черновая медь, а вторичное медьсодержащее сырье. В результате огневого рафинирования необходимо получить не полупродукт (аноды), а готовую высококачественную медь, которая идет на изготовление требуемых заказчиком изделий.

Добиться принципиального изменения уровня примесей в меди огневого рафинирования невозможно без глубокого теоретического анализа возможностей окислительного рафинирования. Простое использование уже имеющихся технологических разработок в этой области невозможно из-за принципиальных отличий в составе исходного вторичного сырья. Главное отличие сырья, доступного в Украине, от аналогичного вторичного сырья других стран с развитой медеплавильной промышленностью заключается в значительной доле бытовых отходов и непрогнозируемом соотношении содержания различных примесей.

Медеплавильные заводы за рубежом используют более качественное вторичное сырье с узкими пределами изменения состава. Соответственно, требования к их технологическому процессу менее жесткие. Украинские предприятия работают на низкокачественном сырье, но применяемые технологии должны обеспечить получение такой же высококачественной меди и конкурентоспособной продукции из нее.

На рис. 2.3 представлен типичный вид партии металлолома, поступившей на переработку на Артемовский завод по обработке цветных металлов.

Рисунок 2.3. Вид партии металлолома, поступившего на ОАО "АЗОЦМ".

Рассмотрим основные показатели технологии углубленного огневого рафинирования, которую использует одна из ведущих европейских фирм - La Farga Lacambra в Испании. Из лома и отходов меди (преимущественно электротехнической) эта фирма изготавливает жидкую медь марок FRTP и Cu-DHP по BS EN 12163:1998, которая транспортируется по желобам к литейно-прокатному комплексу фирмы Properzi для производства медной катанки, или с помощью ковша транспортируется к газовому миксеру машины вертикального литья круглых заготовок для дальнейшего прессования.

В табл. 2.4 и 2.5 представлены сравнительные данные по качеству сырья и требованиям к нему для украинских производителей и фирмы La Farga Lacambra.

Таблица 2.4.

Таблица 2.5.

Технология огневого рафинирования фирмы La Farga Lacambra имеет ряд существенных недостатков, которые не дают возможность использовать ее металлургическим предприятиям Украины даже при наличии самого современного оборудования:

  1. Отсутствие возможности удаления из расплава меди никеля с уровнем содержания 600…900 ppm, олова - 800…900 ppm не позволяет перерабатывать по этой технологии лом и отходы, которые собирают в Украине.
  2. Отсутствует возможность вовлечения в производство луженого и паяного лома и отходов, а также лома бронз и латуней с содержанием меди 92 %.
  3. Отсутствует удаление неметаллических загрязнений в процессе подготовки сырья к плавке, что приводит к дополнительным потерям меди со шлаками, которые образуют эти неметаллические примеси.
  4. Отсутствует анализ состава газов. Это не позволяет интенсификацировать процесс восстановления (удаления кислорода) из расплава меди, обеспечить безопасность условий труда и повысить стойкость оборудования (в связи с возможным повышением концентрации СО в атмосфере печи и дымоходах).
  5. Низкая стойкость футеровки отражательной печи, что связано с агрессивностью флюсов и использованием "мокрого" торкретирования в ходе текущих ремонтов.
  6. Недостаточно долгий межремонтный период работы печи, связанный с частичным выносом пылефлюсовой смеси, ее налипанием на дымовой шибер и быстрым ее накоплением в камере осаждения.
  7. Отсутствие возможности выдержать суточный производственный цикл работы комплекса, поскольку емкость печи огневого рафинирования ОАО "АЗОЦМ" значительно больше, чем на фирме La Farga Lacambra, а производительность оборудования и процессы загрузки недостаточно продуктивны.

Для обеспечения потребности украинской промышленности требуется более мощное производство и заметно большая номенклатура марок меди и сплавов из нее, чем на фирме La Farga Lacambra и у других известных производителей, следовательно, технология должна быть гибкой и легко перестраиваться в зависимости от желаний потребителя и имеющегося сырья.

С учетом этих причин предприятиям Украины, которые занимаются изготовлением меди из вторичного сырья, необходима разработка технологии огневого рафинирования, которая не только устраняет недостатки аналогов, но и имеет большую эффективность.

2. Способы производства высококачественной меди


Рекомендуем почитать

Наверх