Ядерное термоядерное оружие. Ядерное и термоядерное оружие. Принцип действия водородной бомбы

Разное 30.07.2019
Разное

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород - дейтерий, ядра которого имеют необычную структуру - один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-урановая бомба, а также некоторые ее разновидности - сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы, которая будет описана ниже.

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

Характерной особенностью американской внешней политики с приходом в Белый дом Джорджа Буша-младшего (уже во время первого срока его президентства) стал резкий крен в сторону использования силовых методов для обеспечения национальной безопасности и национальных интересов США, практически при полном игнорировании роли ООН и мирового общественного мнения. Достаточно ярким подтверждением этого явилось принятие администрацией Соединенных Штатов так называемой "превентивной военной доктрины", предусматривающей возможность проведения упреждающих военных акций по сугубо субъективному обоснованию их необходимости. В эту доктрину вписывается и силовая модель "контрраспространения", допускающая физическое разрушение ядерной инфраструктуры подозрительного, с точки зрения Вашингтона, государства, которая может быть использована для создания ЯО.

ПРОНИКАЮЩИЕ БОЕГОЛОВКИ

По свидетельству сенаторов-демократов Карла Левина и Джека Рида, "вступив в должность президента США, Буш отказался от Договора по противоракетной обороне. Он оказал давление на Конгресс, чтобы утвердить меры и программы, снижающие порог применения ядерного оружия. Московский Договор об ограничении ядерных потенциалов станет началом и концом инициатив администрации Буша по контролю над вооружениями. Для этой администрации деятельность после окончания холодной войны заключается в том, чтобы опираться на ядерное оружие и уходить от контроля над вооружениями".

В представленном Конгрессу в январе 2002 года "Обзоре ядерной политики" (Nuclear Posture Review; далее для краткости "Ядерный обзор") отражено стремление администрации нивелировать различие между применением ЯО малой мощности и оружия обычного назначения при проведении боевых операций на ТВД. В разделе "Поражение прочных глубоко заглубленных целей" высказано требование о необходимости принятия на вооружение ударостойкой проникающей в грунт на большую глубину ядерной боеголовки малой мощности (до 5 кт). При этом подразумевается, что при использовании такой боеголовки не произойдет выброса радиоактивного заражения на поверхность, а прочные командные бункеры, в том числе и хранилища ОМУ, находящиеся на глубине до 300 м, будут уничтожены. Для реализации этого требования была принята программа разработки "ударостойкого ядерного земного проникателя" (Robust Nuclear Earth Penetrator - RNEP, далее в русской транскрипции - РНЕП).

Однако широкая дискуссия как в американских СМИ, так и на страницах научной периодики показала полную несостоятельность данной программы.

Во-первых, по самым оптимистическим прогнозам, вряд ли удастся добиться проникания боеголовки в грунт на глубину свыше 30 м. Взрыв 5-килотонной боеголовки на такой глубине будет мало чем отличаться от поверхностного взрыва и, следовательно, приведет к губительному радиоактивному заражению поверхности.

Во-вторых, для поражения сильно защищенных бункеров на глубинах порядка 300 м необходима мощность боеголовки не менее 100 кт. И даже при этом совершенно не гарантируется уничтожение химических и биологических агентов ОМУ, которые могут прорваться на поверхность, усугубив эффект заражения. Тем не менее администрация Буша продолжает настаивать на продолжении программы РНЕП, определив в качестве носителя "ядерного проникателя" стратегический бомбардировщик В-2А.

По решению Конгресса в 2000 году в структуре Министерства энергетики было создано ведомство, названное "Администрация национальной ядерной безопасности" (Nation Nuclear Security Administration - NNSA, далее в русской транскрипции ННСА), которая, в тесном взаимодействии с Пентагоном и по его заданиям, осуществляет руководство всеми военными ядерными программами, В ее ведении находятся и все три национальные ядерные оружейные лаборатории - Лос-Аламосская, Ливерморская и Сандийская. На 2006 финансовый год, учитывая неясность концепции РНЕП даже для Минобороны, Конгресс урезал ассигнования на программу до 4 млн. долларов. Однако администрация Буша планирует запросить на нее в 2007 финансовом году 14 млн. долларов. В целом же для обеспечения деятельности ННСА непосредственно в области ЯО в 2006 финансовом году Белый дом требует 6,63 млрд. долларов.

Следует обратить внимание на такой факт. Поначалу в ННСА имелся Консультативный комитет независимых ученых и экспертов в области ЯО. Однако он был распущен перед проведением секретного совещания якобы по ЯО малой мощности - "мини-ньюкам" - разрушителям бункеров на базе Стратегического командования Оффут (штат Небраска) в августе 2003 года. Тем самым ННСА де-факто потеряла свой полунезависимый статус и стала строго засекреченной руководящей структурой ядерного оборонного комплекса США. Нужно также отметить, что на указанное секретное совещание не были допущены даже представители Конгресса.

Между тем, по мнению ряда специалистов, работы по программе РНЕП вовсе не заслуживают столь высокого уровня секретности. Как отмечал физик-ядерщик Сидней Дрелл из Ливерморской национальной лаборатории: "Это вопрос не испытания или развития новых образцов оружия, а принятия решения о возможности скомпоновать конструкцию таким образом, чтобы она могла глубоко проникнуть без разрушения самой себя преждевременным взрывом".

Таким образом, "под сурдинку" мини-ньюков может проводиться разработка принципиально нового поколения ядерного оружия. Программа РНЕП также позволила администрации США оказать давление на Конгресс и добиться отмены в мае 2004 года поправки Спратта-Фурсе (принята в 1994 году), запрещавшей финансирование исследований и разработок по ЯО мощностью до 5 кт.

Об акценте на снижение порога использования ядерного оружия, прежде всего на ТВД, свидетельствуют и разрабатываемые концептуальные документы по условиям применения ЯО в возможных боевых операциях Объединенных вооруженных сил США.

ЧИСТО ТЕРМОЯДЕРНОЕ

Стремление администрации Буша снизить порог применения ядерного оружия и тем самым нивелировать различие между ЯО малой мощности и оружием общего назначения, по мнению многих американских ученых и экспертов, может воплотиться (если уже не воплотилось) в решение о разработке принципиально новых ядерных боеприпасов четвертого поколения - чисто термоядерных.

Напомню, что первое поколение ЯО - атомное, использующее только деление тяжелых ядер урана-235 и плутония-239.

Второе поколение - термоядерное ЯО, в котором предусмотрена как реакция деления тяжелых ядер в качестве детонатора, так и реакция термоядерного синтеза изотопов водорода - дейтерия и трития. При этом повышению удельной мощности способствует реакция деления урана-238 под действием высокоэнергетических нейтронов, возникающих при реакции термоядерного синтеза.

Третье поколение - это рентгеновский лазер. Его действие основано на накачке энергией ядерного взрыва рабочего тела с последующим излучением им рентгеновских лучей. Данное оружие не нашло военного применения и использовалось в качестве блефа администрацией президента Рейгана в рамках "Стратегической оборонной инициативы" (СОИ) как оружие противоракетной обороны.

Таким образом, во всех трех поколениях ЯО непременно присутствует реакция деления тяжелых ядер, сопровождающаяся долговременным радиоактивным заражением окружающей среды. Это обстоятельство и является до сих пор гарантом высокого порога для применения ядерного оружия даже малой и сверхмалой мощности.

Когда же идет речь о ЯО четвертого поколения, то имеется в виду чисто термоядерное оружие, реакция синтеза в котором инициируется альтернативным реакции деления источником энергии. Он должен быть вполне пригоден для осуществления реакции термоядерного синтеза и достаточно компактен для размещения в соответствующей боеголовке.

В американских специализированных научных изданиях и некоторых печатных источниках неправительственных организаций, занимающихся вопросами контроля над вооружениями, проблеме ЯО четвертого поколения придается значительное внимание. В то же время официальные представители администрации категорически отрицают как наличие решения о создании ЯО четвертого поколения, так и то, что национальные ядерные лаборатории занимаются его разработкой.

Однако некоторые независимые эксперты (правда, без каких-либо конкретных ссылок), определенно утверждают, что такие работы ядерными лабораториями ведутся. Так, например, директор "Ядерных наблюдений из Нью-Мексико" (Nucewatch of New Mexico) Джей Коуглин утверждает: "Существует три ядерные лаборатории, и все три имеют программы по термоядерному синтезу - одинаковые или разные. Такой интерес само собой разумеющийся┘".

Кратко, но по основным моментам полно, вопрос о чисто термоядерном оружии освещается в статье Джеймса Петокоукиса (James M. Pethokoukis. H-bomb Baby boom? The US News and World Report, October 13, 2003.): "┘активисты и исследователи говорят, что на длительный период зеленый свет для исследования могла также дать поддержка полностью нового мини-ньюка, так называемая чисто термоядерная бомба". Ему вторит Джей Коуглан, эксперт из Нью-Мексико: "Потворствуя мини-ньюкам, вы... открываете дверь к созданию даже более продвинутых мини-ньюков, таких, как чисто термоядерное оружие".

Чисто термоядерные бомбы могли бы быть более компактными и мощными, чем сегодняшние мини-ньюки, без выпадения радиоактивных осадков. Существующие конструкции получают основную мощность от синтеза водородных атомов, но для этого требуется могучая спичка - атомный взрыв, - чтобы зажечь процесс. А реакция деления означает осадки. Чистое термоядерное оружие испустило бы изрядное количество мгновенной убийственной радиации, но в виде короткоживущих нейтронов. "Вы могли бы вводить ваши воинские части через 48 часов, потому что не будет никаких радиоактивных осадков", - говорит Арджун Махиджани из Института исследований энергии и окружающей среды в Парке Такома, Mериленд. Это - военное преимущество, но это могло бы снизить порог использования этого оружия.

По словам Андрэ Гаспонера из Независимого научно-исследовательского института в Женеве, реакция деления требует критической массы плутония или урана; для чисто термоядерного оружия не существует критической массы, и потому "оно может быть, сколь угодно малым по вашему желанию, виртуально - атомными пулями". Однако будет дебютировать это ЯО, полагает эксперт, как ультрамощные боеголовки крылатых ракет.

ТЕХНИЧЕСКИЕ ПРЕГРАДЫ

Наибольшая техническая преграда - "поджог" реакции синтеза без реакции деления. Размером со стадион и стоимостью в 3,3 млрд. долларов Национальная лазерная установка (NIF - National Ignition Facility) в Ливерморской национальной лаборатории им. Лоуренса в Калифорнии исследует один из подходов. Начиная с 2008 года NIF будет обстреливать 192 лазерными лучами капсулы изотопов водорода размером с горошину, сжимая и нагревая их до 100 млн. градусов, чтобы зажечь реакцию синтеза. Официальные лица NIF указывают, что они не разрабатывают инициируемые лазером бомбы. "Нет ни одного такого аспекта, на который вы могли бы указать, - говорит руководитель NIF Джордж Миллер. - Это невыполнимо, и мы не планируем делать это".

Роль NIF состоит в том, чтобы изучить возможность создания гражданских электростанций на основе синтеза и проводить базовые исследование, способствующие оценке готовности существующего ядерного арсенала. Но то, что NIF открывает возможность осуществления реакции синтеза без реакции деления, может оказаться полезным для разработчиков оружия, заявляют некоторые эксперты. Например, Глен Вурден, физик - специалист по синтезу Лос-Аламосской национальной лаборатории: "Лазерный синтез работает очень похоже, как и в оружии".

Ключи к разгадке проблемы способна также добыть Национальная лаборатория Сандия в Нью-Мехико, где "Z-машина" управляет огромным импульсом электрического тока через связку очень тонких проводов. Результат - плазменный взрыв, испускающий пучок рентгеновских лучей, которые могут катализировать реакцию термоядерного синтеза. Некоторые теоретики даже предполагают, что частицы антиматерии послужат в качестве спускового механизма, хотя пока физики создали лишь несколько антиатомов.

Препятствия могли бы растягивать календарный график на десятилетия. Но даже в 1997 году чисто термоядерное оружие казалось достаточно вероятным для Ганса Бете, нобелевского лауреата по физике и ветерана усилий по созданию атомной бомбы. Он настоятельно советовал президенту Клинтону не финансировать подобные исследования. "В наши дни маленькие бомбы начинают вырисовываться в огромные", - говорил Бете.

Принципиально новой установкой для исследований термоядерного синтеза является Magnetized Target Fusion (MTF). Она совместно используется Лос-Аламосской национальной лабораторией и Научно-исследовательской лабораторией ВВС (база ВВС Киртланд, Нью-Мексико). В отличие от обычного токомака и лазерного возбуждения синтеза MTF имеет преимущество в менее дорогостоящей возможности получения термоядерной энергии в промышленных масштабах. В последние годы фокус усилий в исследованиях синтеза, особенно в США, перемещается от научной возможности к экономической практичности. Установка предназначена также для проведения исследований по военным программам.

Таким образом, в США создана мощная материальная основа для успешных исследований проблем термоядерного синтеза по трем разным направлениям, разумеется, не только для промышленного освоения термоядерной энергии, но и для военного применения.

Эта основа закладывалась в период второго срока президентства Клинтона в рамках подготовки к заключению Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) для обеспечения надежного функционирования ядерного арсенала США в условиях запрещения ядерных испытаний - Программы сопровождения ядерного арсенала.

Уже тогда эксперты Института исследований энергии и окружающей среды отмечали, что официальные планирующие документы по этой программе свидетельствовали: Министерство обороны США намерено поддерживать разработку нового ЯО. С точки зрения рационализма, Пентагону необходимо не только иметь передовые установки, чтобы заинтересовать и удержать ученых, но также предоставить им благоприятные возможности для практической реализации их знаний как творцов средств поражения будущего. Министерство обороны отрицает стремление разрабатывать чисто термоядерное оружие. Но проводимая Пентагоном научно-техническая деятельность может привести к его созданию, несмотря на все опровержения, потому что она на практике именно этому и способствует.

На проведение в США работ по чисто термоядерному оружию указывал в 1999 году академик Михайлов ("Перспективы новых технологий разработки ядерного оружия". "НВО", # 15, 1999). В частности, Михайлов отмечал, что в рамках Программы сопровождения ядерного арсенала "также будут проводиться работы по созданию принципиально новых видов оружия и оценке физических принципов, существенных для проектирования ядерного оружия. Надо полагать, речь идет, по сути, о практически "чистом" термоядерном заряде, резко понижающем психологический барьер применения ядерного оружия, и без долговременного заражения продуктами взрыва".

Характерно, что Министерство обороны США оперативно реагирует на даже, казалось бы, экзотические источники ядерной энергии для их использования в военных целях. Так, например, научные эксперименты по накачке гафния низкоэнергетическим рентгеновским излучением, приведшие к образованию метастабильного атомного изомера - hafnium-178m2, показавшие 60-кратное увеличение энергии последующего гамма-излучения, сразу же были включены в пентагоновский "Перечень военно-критических технологий": "Такая экстраординарная плотность энергии имеет потенциал революционизировать все аспекты ведения военных действий".

ПОНИЖЕНИЕ ПОРОГА

Следует также отметить, что помимо трех ядерных оружейных лабораторий Министерства энергетики, работы в области атомной изомерии в военно-прикладном плане, наряду с термоядерным синтезом, проводит упомянутая Исследовательская лаборатория ВВС в Киртланде.

Как уже подчеркивалось выше, с приходом в Белый дом Джорджа Буша-младшего наметился четкий акцент на снижение порога использования ЯО малой мощности, прежде всего на ТВД. Чисто термоядерное оружие в наибольшей степени соответствует такому стремлению.

Принципиальное преимущество чисто термоядерного боеприпаса перед нынешним поколением термоядерных БП с атомным детонатором - отсутствие долговременного заражения радиоактивными продуктами взрыва последнего. При чисто термоядерном взрыве образуются только инертный газ гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию. К тому же путем использования соответствующих материалов для конструкции корпуса боеприпаса можно снизить выход потока нейтронов в окружающую среду. Основными поражающими факторами такого боеприпаса будут только ударная волна и световое излучение. Что же касается механического поражающего фактора - ударной волны, то он может варьироваться в широчайших пределах от единиц до тысяч и более килограммов тротилового эквивалента, что не грозит человечеству "ядерной зимой" при применении такого термоядерного боеприпаса на высокоточных носителях для нанесения "хирургических ударов" по стратегически значимым целям.

Какие имеются стимулы создания такого термоядерного заряда для США? Это прежде всего интересы повышения эффективности противоракетной обороны - как на ТВД, так и национальной. Особенно теперь, когда выход США из Договора по ПРО более не ограничивает совершенствование систем противоракетной обороны и выбор средств для повышения ее эффективности. Использование чисто термоядерного боеприпаса для поражения вражеских боеголовок даже на малой высоте над своей территорией не приведет к выпадению радиоактивных осадков. Вдобавок такой боеприпас, в зависимости от его тротилового эквивалента, может обладать достаточно широким дистанционным поражающим эффектом.

В случае применения боеголовок с чисто термоядерным зарядом для поражения находящихся примерно в 300 м от поверхности земли и сильно укрепленных бункеров при внедрении боеголовки даже на небольшую глубину нейтронное излучение практически полностью будет поглощено прилегающими к месту взрыва слоями грунта. Но надо иметь в виду, что для уничтожения особо важных и защищенных объектов при реально достижимой глубине проникания боеприпаса требуется мощность взрыва порядка 100 кт и более.

При подводном взрыве чисто термоядерного боеприпаса нейтронное излучение также будет поглощено водными массами - следовательно, такое оружие будет эффективным противолодочным и противокорабельным оружием.

Исключительно адекватно чисто термоядерное оружие вписывается в американскую концепцию "контрраспространения" ОМУ, допускающую физическое разрушение инфраструктуры его производства (имеется в виду прежде всего ЯО враждебных, по мнению США, государств).

Поэтому есть высокая степень вероятности, что в условиях строжайшей секретности работы по созданию чисто термоядерного оружия ведутся в Соединенных Штатах полным ходом. На проведение таких работ указывают и некоторые американские эксперты. Единственной, но критической проблемой здесь является разработка такого компактного импульсного источника энергии, который был бы способен инициировать взрывную термоядерную реакцию синтеза и мог бы быть размещен в соответствующей боеголовке. Однако некоторые предпосылки решения этой проблемы в настоящее время имеются. Особо можно выделить три направления:

Первое - исследования процессов катализа термоядерного синтеза на субатомном уровне с целью возможности снижения его энергетики.

Второе - разработка компактных сверхмощных импульсных источников электромагнитной энергии.

Третье - разработка на базе последних достижений нанотехнологий накопителей электрической энергии, достаточной для "поджога" взрывного термоядерного синтеза.

В частности, относительно первого направления есть информация, что международный коллектив физиков в канадской "Национальной лаборатории физики ядра и элементарных частиц" выполнил эксперимент, который привел к интенсивному синтезу необычных молекул. Они состоят из ядер тяжелых изотопов водорода дейтерия и трития и связанного с ними мю-мезона. Теоретические расчеты показывают, что такие мезомолекулы могут катализировать управляемые термоядерные реакции, протекающие при относительно низких температурах.

Но, возможно, более перспективным окажется второе направление в связи с тем, что уже сконструированы компактные мощные генераторы импульсного электромагнитного излучения (FC-генераторы), способные путем сжатия магнитного потока взрывом обычной взрывчатки производить электрический ток, в 10-1000 раз превышающий ток в разряде типичной молнии. Не исключено, что подобный генератор был использован в американской электромагнитной бомбе (Е-бомбе), взрыв которой 26 марта 2003 года вывел из строя все электронное оборудовании телевизионного центра в Багдаде.

Также возможно, что в связи с бурным развитием нанотехнологий перспективным может оказаться и третье направление разработки компактных источников энергии, достаточной для инициирования взрывной термоядерной реакции. В настоящее время есть данные, что уже имеются конденсаторы с удельной емкостью в 30 киловатт электрической энергии на один килограмм веса. Такие конденсаторы могут быть использованы для накачки лазеров, расположенных в боеголовке, и тем самым инициировать взрывную реакцию синтеза. По имеющейся информации, известная американская фирма "Интел" разрабатывает кремниевые микролазеры для использования при создании принципиально нового поколения микропроцессоров для ЭВМ. Эти кремниевые микролазеры способны усиливать на три порядка выход энергии излучения по сравнению с энергией, затрачиваемой на их накачку. Вполне вероятно, подобные эффекты могут быть получены и на соответствующих макролазерах.

В общем, миллиарды долларов, затрачиваемые самой передовой в технологическом отношении страной на деятельность ядерных оружейных лабораторий, не исключено, рано или поздно приведут к появлению четвертого поколения ЯО - чисто термоядерного. Многие эксперты полагают, что есть определенная степень вероятности появления чисто термоядерного оружия раньше, чем будет освоено промышленное использование термоядерной энергии на экономически приемлемом уровне. История может повториться, как это было с атомным оружием - сначала бомба, а потом энергетика.

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.



Рекомендуем почитать

Наверх