Основные формулы дифференциального исчисления функции одной переменной. Возникновение дифференциального исчисления как начало науки нового времени

Красота 22.09.2019
Красота

дифференциальное исчисление

Дифференциальное исчисление , раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление . . в самостоятельную математическую дисциплину связано с именами И. Ньютона и . Лейбница (вторая половина 17 в.). Они сформулировали основные положения Д. и. и четко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Д. и. развивается в тесной связи с интегральным исчислением, вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс . и Энгельс Ф., Соч., 2 изд., т. 20, . 587). Д. и. зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ : действительные числа (числовая прямая), функция , предел , непрерывность . Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Д. и. состоит в изучении функций в малом. Точнее: Д. и. дает аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Д. и.: производная и дифференциал . Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них - определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа. Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения дает тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt2/2, где s - пройденный путь с начала падения (в метрах), t - время падения (в секундах), g - постоянная величина , ускорение свободного падения, g » 9,81 м/сек2. За первую секунду падения тело пройдет около 4,9 , за вторую - около 14,7 м, а за десятую - около 93,2 м, т. . падение происходит неравномерно. Поэтому приведенное выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t, но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt, которую называют скоростью движения в момент времени t. Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается. В общем случае эти вычисления надо проводить для любого момента времени t, промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t). Тогда средняя скорость движения за промежуток времени от t до t + Dt дается формулой Ds/Dt, где Ds = f (t + Dt) - f (t), а скорость движения в момент времени t равна Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t, а не функцией интервала (t, t + Dt). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддается средняя, а не мгновенная скорость. К выражению типа (*) приводит и задача (см. рис.) построения касательной к плоской кривой в некоторой ее точке М. Пусть кривая Г есть график функции у = f (x). Положение касательной будет определено, если будет найден ее угловой коэффициент , т. е. тангенс угла a, образованного касательной с осью Ox. Обозначим через x0 абсциссу точки М, а через x1 = x0 + Dх - абсциссу точки M1. Угловой коэффициент секущей MM1 равен где Dy = M1N = f (x0 + Dx) - f (x0) - приращение функции на отрезке x0, x1. Определяя касательную в точке М как предельное положение секущей MM1, когда x1 стремится к x0, получаем Отвлекаясь от механического или геометрического содержания приведенных задач и выделяя общий для них прием решения, приходят к понятию производной. Производной функции у = f (x) в точке х называется предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Например, сила тока определяется как предел где Dq - положительный электрический заряд, переносимый через сечение цепи за время Dt; скорость химической реакции определяется как предел где DQ - изменение количества вещества за время Dt; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физическим величинам. Производную функции y = f (x) обозначают f" (x), у", dy/dx, df/dx или Df (х). Если функция y = f (x) имеет в точке х0 производную, то она определена как в самой точке x0, так и в некоторой окрестности этой точки и непрерывна в точке x0. Обратное заключение было бы, однако, неверным. Например, непрерывная в каждой точке функция графиком которой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т.к. отношение Dу/Dх не имеет предела при Dx ® 0: если Dх > 0, это отношение равно +1, а если Dx операция линейна. Таблица формул и правил дифференцирования (C)? = 0; (xn)? = nxn-1; (aх)? = ax ln a и (ex)? = ex; (logax)? = 1/x ln a и (ln x)? = 1/x; (sin x)? = cos x; (cos x)? = – sin x; (tg x)? = 1/cos2 x; (ctg x)? = – 1/sin2 x; (arc tg x)? = 1/(1 + x2). f (x) ± g (x)? = f ?(x) ± g?(x); Cf (x)? = Cf ?(x); f (x) g (x)? = f??(x) g (x) + f (x) g ?(x); если y = f (u) и u = j(x), т. е. y = f j(x), то dy/dx = (dy/du)?(du/dx) = f? (u)j?(x). Здесь С, n и a - постоянные, a > 0. Эта таблица, в частности, показывает, что производная от всякой элементарной функции есть снова элементарная функция. Если производная f" (x), в свою очередь, имеет производную, то ее называют второй производной функции у = f (x) и обозначают у", f" (x), d2y/dx2, d2f/dx2 или D2f (x). Для прямолинейно движущейся точки вторая производная характеризует ее ускорение. Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается yn, fn (x), dny/dxn, dnf/dxn или Dnf (x). Дифференциал. Функция у = f (x), область определения которой содержит некоторую окрестность точки х0, называется дифференцируемой в точке x0, если ее приращение Dy = f (x0 + Dx) - f (x0) можно записать в форме Dу = АDх + aDх, где А = А (x0), a = a(х, x0) ® 0 при х ® x0. В этом и только в этом случае выражение ADx называется дифференциалом функции f (x) в точке x0 и обозначается dy или df (x0). Геометрически дифференциал (при фиксированном значении x0 и меняющемся приращении Dx) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис.). Дифференциал dy представляет собой функцию как от точки х0, так и от приращения Dх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х0, dy есть линейная функция от Dх и разность Dy - dy есть бесконечно малая относительно Dx. Для функции f (x) ? х имеем dx = Dх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и ее производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x0 дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f" (x0), и справедливо равенство dy = f" (x0) dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x) в точке с абсциссой x0 как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x0 примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х0) = f" (x0); запись dy/dx можно понимать не только как обозначение для производной f" (x0), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f" (x0) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных. Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближенные вычисления значений функции, а также оценивают погрешности вычислений. Пусть, например, надо вычислить значение функции f (x) в точке , если известны f (x0) и f" (x0). Заменяя приращение функции ее дифференциалом, получают приближенное равенство f (x1) » f (x0) + df (x0) = f (x0) + f" (x0) (x1 - x0). Погрешность этого равенства приближенно равна половине второго дифференциала функции, т. е. 1/2 d2f = 1/2 f" (x0)(x1 – x0)2. Приложения. В Д. и. устанавливаются связи между свойствами функции и ее производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f (a) - f (b) = f" (c)(b - а), где a степень гладкости, выпуклость и вогнутость, возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер ее особых точек и т.д. Например, условие f" (x) > 0 влечет за собой (строгое) возрастание функции у = f (x), а условие f" (x) > 0 - ее (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности ее области определения, находятся среди корней уравнения f" (x) = 0. Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и?/? (см. Неопределенное выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме. Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х, у) частной производной по х называется производная этой функции по х при постоянном у. Эта частная производная обозначается z"x, f"x (x, y), ¶z/¶х или ¶f (x, y)/¶x, так что Аналогично определяется и обозначается частная производная z по у. Величина Dz = f (x + Dx, y + Dy) - f (x, y) называется полным приращением функции z = f (x, y). Если его можно представить в виде Dz = ADx + ВDу + a, где a - бесконечно малая более высокого порядка, чем расстояние между точками (х, у) и (х + Dх, у + Dу), то говорят, что функция z = f (x, y) дифференцируема. Слагаемые АDх + ВDу образуют полный дифференциал dz функции z = f (x, y), причем А = z"x, B = z"y. Вместо Dx и Dy обычно пишут dx и dy, так что Геометрически дифференцируемость функции двух переменных означает существование у ее графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy. Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка еще не гарантирует дифференцируемости функции. Однако, если частные производные кроме того еще непрерывны, то функция дифференцируема. Аналогично определяются частные производные высших порядков. Частные производные ¶2f/¶х2 и ¶2f/¶у2, в которых дифференцирование ведется по одному переменному, называют чистыми, а частные производные ¶2f/¶x¶y и ¶2f/¶у¶х- смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных. Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены еще математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Д. и. Эпохой создания Д. и. как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата - при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем. Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), ее скорость - флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределенный интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена. В середине 70-х гг. 17 . Г. Лейбниц разработал очень удобный алгоритм Д. и. Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определенный интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла oydx, ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Д. и. шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев . и И. Бернулли , . Тейлора и др. Следующим этапом в развитии Д. и. были работы . Эйлера и . Лагранжа (18 в.). Эйлер впервые стал излагать его как аналитическую дисциплину, независимо от геометрии и механики. Он вновь выдвинул к качестве основного понятия Д. и. производную. Лагранж пытался строить Д. и. алгебраически, пользуясь разложением функций в степенные ряды; ему, в частности, принадлежит введение термина «производная» и обозначения у" или f" (x). В начале 19 в. была удовлетворительно решена задача обоснования Д. и. на основе теории пределов. Это было выполнено главным образом благодаря работам . Коши, Б. Больцано и К. Гаусса. Более глубокий анализ исходных понятий Д. и. был связан с развитием теории множеств и теории функций действительного переменного в конце 19 - начале 20 вв. Лит.: История . Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М., Vorlesungen uber Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - В., 1901-24. Работы основоположников и классиков Д. и. Ньютон И., Математические работы, пер. с латин., М. - Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с латин., «Успехи математических наук», 1948, т. 3, в. 1; Л"Опиталь Г. . де, Анализ бесконечно малых , пер. с франц., М. - Л., 1935; Эйлер Л., Введение в анализ бесконечных, пер. с латин., 2 изд., т. 1, М., 1961; его же, Дифференциальное исчисление, пер. с латин., М. - Л., 1949; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864. Учебники и учебные пособия по Д. и. Хинчин . Я., Краткий курс математического анализа, 3 изд., М., 1957; его же, Восемь лекций по математическому анализу, 3 изд., М. - Л., 1948; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Ла Валле-Пуссен . Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1, Л. - М., 1933; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем . и англ., 4 изд., т. 1, М., 1967; Банах С., Дифференциальное и интегральное исчисление, пер. с польск., 2 изд., М., 1966; Рудин У., Основы математического анализа, пер. с англ., М., 1966. Под редакцией С. Б. Стечкина.

Дифференциальное исчисление

раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютон а и Г. Лейбниц а (вторая половина 17 в.). Они сформулировали основные положения Д. и. и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Д. и. развивается в тесной связи с интегральным исчислением (См. Интегральное исчисление), вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587).

Д. и. зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (См. Действительное число) (числовая прямая), Функция , Предел , Непрерывность . Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Д. и. состоит в изучении функций в малом. Точнее: Д. и. даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Д. и.: производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них - определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа (См. Функциональный анализ).

Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt 2 /2, где s - пройденный путь с начала падения (в метрах), t - время падения (в секундах), g - постоянная величина, ускорение свободного падения, g ≈ 9,81 м/сек 2 . За первую секунду падения тело пройдёт около 4,9 м , за вторую - около 14,7 м , а за десятую - около 93,2 м , т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t ; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t , но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Δt равна

Это выражение при неограниченном уменьшении промежутка времени Δt приближается к величине gt , которую называют скоростью движения в момент времени t . Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.

В общем случае эти вычисления надо проводить для любого момента времени t , промежутка времени от t до t + Δt и закона движения, выражаемого формулой s = f (t ). Тогда средняя скорость движения за промежуток времени от t до t + Δt даётся формулой Δs/Δt , где Δs = f (t + Δt ) - f (t ), а скорость движения в момент времени t равна

Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t , а не функцией интервала (t , t + Δt ). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.

К выражению типа (*) приводит и задача (см. рис. ) построения касательной (См. Касательная) к плоской кривой в некоторой её точке М . Пусть кривая Г есть график функции у = f (x ). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла α, образованного касательной с осью Ox . Обозначим через x 0 абсциссу точки М , а через x 1 = x 0 + Δх - абсциссу точки M 1 . Угловой коэффициент секущей MM 1 равен

где Δy = M 1 N = f (x 0 + Δx ) - f (x 0 ) - приращение функции на отрезке [x 0 , x 1 ]. Определяя касательную в точке М как предельное положение секущей MM 1 , когда x 1 стремится к x 0 , получаем

Отвлекаясь от механического или геометрического содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f (x ) в точке х называется предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что

где Δq - положительный электрический заряд, переносимый через сечение цепи за время Δt ; скорость химической реакции определяется как предел

где ΔQ - изменение количества вещества за время Δt ; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физическим величинам.

Производную функции y = f (x ) обозначают f" (x ), у" , dy/dx , df/dx или Df (х ). Если функция y = f (x ) имеет в точке х 0 производную, то она определена как в самой точке x 0 , так и в некоторой окрестности этой точки и непрерывна в точке x 0 . Обратное заключение было бы, однако, неверным. Например, непрерывная в каждой точке функция

графиком которой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т.к. отношение Δу/ Δх не имеет предела при Δx → 0: если Δх > 0, это отношение равно +1, а если Δx Непрерывная функция).

Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.

Таблица формул и правил дифференцирования

(C )´ = 0; (x n )´ = nx n-1 ;

(a х )´ = a x ln a и (e x )´ = e x ;

(log a x )´ = 1/x ln a и (ln x )´ = 1/x ;

(sin x )´ = cos x ; (cos x )´ = – sin x ;

(tg x )´ = 1/cos 2 x ; (ctg x )´ = – 1/sin 2 x ;

(arc tg x )´ = 1/(1 + x 2 ).

[f (x ) ± g (x )]´ = f ´(x ) ± g ´(x );

[Cf (x )]´ = Cf ´(x );

[f (x ) g (x )]´ = f ´´(x ) g (x ) + f (x ) g ´(x );

если y = f (u ) и u = φ(x ), т. е. y = f [φ(x )], то dy/dx = (dy/du )․(du/dx ) = f" (u )φ"(x ).

Если производная f" (x ), в свою очередь, имеет производную, то её называют второй производной функции у = f (x ) и обозначают

у" , f" (x ), d 2 y/dx 2 , d 2 f/dx 2 или D 2 f (x ).

Для прямолинейно движущейся точки вторая производная характеризует её ускорение.

Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается

y n , f n (x ), d n y/dx n , d n f/dx n или D n f (x ).

Дифференциал. Функция у = f (x ), область определения которой содержит некоторую окрестность точки х 0 , называется дифференцируемой в точке x 0 , если её приращение

Δy = f (x 0 + Δx ) - f (x 0 )

можно записать в форме

Δу = А Δх + αΔх ,

где А = А (x 0 ), α = α(х , x 0 ) → 0 при х x 0 . В этом и только в этом случае выражение AΔx называется дифференциалом функции f (x ) в точке x 0 и обозначается dy или df (x 0 ). Геометрически дифференциал (при фиксированном значении x 0 и меняющемся приращении Δx ) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис. ). Дифференциал dy представляет собой функцию как от точки х 0 , так и от приращения Δх . Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х 0 , dy есть линейная функция от Δх и разность Δy - dy есть бесконечно малая относительно Δx . Для функции f (x ) ≡ х имеем dx = Δх , т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx . Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x 0 дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f" (x 0 ), и справедливо равенство dy = f" (x 0 ) dx . Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x ) в точке с абсциссой x 0 как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x 0 примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х 0 ) = f" (x 0 ); запись dy/dx можно понимать не только как обозначение для производной f" (x 0 ), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f" (x 0 ) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.

Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближённые вычисления значений функции, а также оценивают погрешности вычислений. Пусть, например, надо вычислить значение функции f (x ) в точке х , если известны f (x 0 ) и f" (x 0 ). Заменяя приращение функции её дифференциалом, получают приближённое равенство

f (x 1 ) ≈ f (x 0 ) + df (x 0 ) = f (x 0 ) + f" (x 0 ) (x 1 - x 0 ).

Погрешность этого равенства приближённо равна половине второго дифференциала функции, т. е.

1/2 d 2 f = 1/2 f" (x 0 )(x 1 x 0 ) 2 .

Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, Выпуклость и вогнутость , возрастание и убывание функций (См. Возрастание и убывание функции), их Экстремум ы, найти их асимптоты (См. Асимптота), точки перегиба (см. Перегиба точка), вычислить кривизну (См. Кривизна) кривой, выяснить характер её особых точек (См. Особая точка) и т.д. Например, условие f" (x ) > 0 влечёт за собой (строгое) возрастание функции у = f (x ), а условие f" (x ) > 0 - её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f" (x ) = 0.

Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ∞/∞ (см. Неопределённое выражение (См. Неопределённые выражения), Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х , у ) частной производной по х называется производная этой функции по х при постоянном у . Эта частная производная обозначается z" x , f" x (x , y ), ∂z/ х или ∂f (x , y )/∂x , так что

Аналогично определяется и обозначается частная производная z по у . Величина

Δz = f (x + Δx , y + Δy ) - f (x , y )

называется полным приращением функции z = f (x , y ). Если его можно представить в виде

Δz = A Δx + В Δу + α,

где α - бесконечно малая более высокого порядка, чем расстояние между точками (х , у ) и (х + Δх , у + Δу ), то говорят, что функция z = f (x , y ) дифференцируема. Слагаемые А Δх + В Δу образуют полный дифференциал dz функции z = f (x , y ), причём А = z" x , B = z" y . Вместо Δx и Δy обычно пишут dx и dy , так что

Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy . Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.

Аналогично определяются частные производные высших порядков. Частные производные ∂ 2 f/ х 2 и ∂ 2 f/ у 2 , в которых дифференцирование ведётся по одному переменному, называют чистыми, а частные производные ∂ 2 f/ x y и ∂ 2 f/ у х - смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных.

Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены ещё математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Д. и.

Эпохой создания Д. и. как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата - при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем.

Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), её скорость - флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена.

В середине 70-х гг. 17 в. Г. Лейбниц разработал очень удобный алгоритм Д. и. Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определённый интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла ∫ydx , ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Д. и. шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев Я. и И. Бернулли , Б. Тейлор а и др.

Следующим этапом в развитии Д. и. были работы Л. Эйлер а и Ж. Лагранж а (18 в.). Эйлер впервые стал излагать его как аналитическую дисциплину, независимо от геометрии и механики. Он вновь выдвинул к качестве основного понятия Д. и. производную. Лагранж пытался строить Д. и. алгебраически, пользуясь разложением функций в степенные ряды; ему, в частности, принадлежит введение термина «производная» и обозначения у" или f" (x ). В начале 19 в. была удовлетворительно решена задача обоснования Д. и. на основе теории пределов. Это было выполнено главным образом благодаря работам О. Коши , Б. Больцано и К. Гаусс а. Более глубокий анализ исходных понятий Д. и. был связан с развитием теории множеств и теории функций действительного переменного в конце 19 - начале 20 вв.

Лит.: История. Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М., Vorlesungen über Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - В., 1901-24.

Работы основоположников и классиков Д. и. Ньютон И., Математические работы, пер. с латин., М. - Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с латин., «Успехи математических наук», 1948, т. 3, в. 1; Л"Опиталь Г. Ф. де, Анализ бесконечно малых, пер. с франц., М. - Л., 1935; Эйлер Л., Введение в анализ бесконечных, пер. с латин., 2 изд., т. 1, М., 1961; его же, Дифференциальное исчисление, пер. с латин., М. - Л., 1949; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

Учебники и учебные пособия по Д. и. Хинчин А. Я., Краткий курс математического анализа, 3 изд., М., 1957; его же, Восемь лекций по математическому анализу, 3 изд., М. - Л., 1948; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Ла Валле-Пуссен Ш. Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1, Л. - М., 1933; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Банах С., Дифференциальное и интегральное исчисление, пер. с польск., 2 изд., М., 1966; Рудин У., Основы математического анализа, пер. с англ., М., 1966.

Под редакцией С. Б. Стечкина.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

– определение производной функции f  (x ) в точке x 0  ;

– дифференциал функции f  (x ) в точке x 0 .

Производные простейших элементарных функций:

– правило дифференцирования сложной функции в точке x 0  , здесь ;

– правило дифференцирования обратной функции в точке ;

– формула Лагранжа, ;

– формула Коши, ;

– формула Тейлора, .

1. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1975.

2. Бермант А.Ф., Арамонович И.И. Краткий курс математического анализа. М.: Наука, 1967.

3. Болгов В.А., Демидович Б.П., Ефимов А.В. и др. Сборник задач по математике для втузов. Ч. 1, М.: Наука, 1986.

4. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в примерах и задачах. М.: Высшая школа, 1986.

5. Задачи и упражнения по математическому анализу для ВТУЗов. Под ред. Демидовича Б.П., М.: Наука, 1968.

6. Запорожец Г.И. Руководство к решению задач по математическому анализу. М.: Высшая школа, 1964.

7. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М.: Наука, 1985.

8. Математика в техническом университете. Выпуск II. Дифференциальное исчисление функций одного переменного. Под ред. Зарубина В.С. и Крищенко А.П., М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.

9. Минорский В.П. Сборник задач по высшей математике. М.: Наука, 1987.

10. Пискунов Н.С. Дифференциальное и интегральное исчисление. М.: Наука, Т. 1,2, 1976.

11. Сборник задач по математике для ВТУЗов. Под ред. Ефимова А.В., М.: Наука, Ч. 1-4, 1993-1994.

12. Щипачев В.С. Высшая математика. М.: Высшая школа, 1996.

13. Щипачев В.С. Задачи по высшей математике. М.: Высшая школа, 1997.


Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета.

Составители: Мусакаев Н.Г., доцент, к.ф.-м.н.

Сметанина И.А., ст. преподаватель

Мусакаева М.Ф., ассистент

Алтунин Е.А., ассистент

© Государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Материал из Юнциклопедии


Дифференциальное исчисление - это раздел анализа математического, связанный главным образом с понятиями производной и дифференциала функции. В дифференциальном исчислении изучаются правила вычисления производных (законы дифференцирования) и применения производных к исследованию свойств функций.

Центральные понятия дифференциального исчисления - производная и дифференциал - возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них - физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой. Рассмотрим подробно каждую из них.

Будем вслед за итальянским ученым Г. Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Пусть t - время, отсчитываемое от начала падения, a s(t) - пройденное к моменту t расстояние. Галилей экспериментально нашел, что зависимость s(t) имеет следующий простой вид:

s(t) = (1/2)gt 2 ,

где t - время в секундах, а g - физическая постоянная, равная примерно 9,8 м/с 2 .

Движение свободно падающего тела явно неравномерное. Скорость v падения постепенно возрастает. Но как именно выглядит зависимость v(t)? Ясно, что, зная зависимость s(t), т. е. закон движения падающего тела, мы в принципе должны иметь возможность получить отсюда и выражение для скорости v(t) как функции времени.

Попробуем найти зависимость v от t. Будем рассуждать следующим образом: фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h - небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдет путь, равный s(t + h) - s(t). Если промежуток времени h очень маленький, то скорость тела за время h не успевает заметно измениться, поэтому можно считать, что если h мало, то приближенно

s(t + h)-s(t) ≈ v(t) h, (1)

(s(t + h)-s(t))/h ≈ u(t) (2)

причем последнее приближенное равенство тем точнее, чем меньше h (чем ближе величина h к нулю). Значит, величину v(t) скорости в момент t можно рассматривать как предел, к которому стремится стоящее в левой части приближенного равенства (2) отношение, выражающее среднюю скорость на интервале времени от момента t до момента t + h, когда величина h стремится к нулю. Сказанное записывают в виде

v(t) = lim h→∞ (s(t + h) - s(t))/h. (2)

Проведем указанные в соотношении (3) вычисления, исходя из найденной Галилеем зависимости

s(t) = (1/2)gt 2 .

Сделаем сначала элементарные вычисления:

s(t + h) - s(t) = (1/2)g(t + h) 2 - (1/2)gt 2 = (1/2)g(t 2 + 2th + ht 2) - (1/2)gt 2 = gth + (1/2)gh 2 .;

а теперь, разделив на h, получаем

(s(t + h) - s(t))/h = gt + (1/2)gh.

Когда h стремится к нулю, второе слагаемое записанной справа суммы тоже стремится к нулю, а первое остается постоянным, точнее, не зависящим от величины h, поэтому в нашем случае

v(t) = lim h→∞ ((1/2)g(t + h) 2 - (1/2)gt 2)/h = gt,

и мы нашли закон

изменения скорости свободно падающего тела. Обратите внимание, формула (3) одновременно дает и определение, и правило вычисления значений v(t) мгновенной скорости изменения функции s(t).

Поскольку скорость v(t) сама есть функция времени, то можно было бы поставить вопрос о скорости ее изменения. В физике скорость изменения скорости называется ускорением. Таким образом, если v(t) - скорость как функЦия времени, то, рассуждая как и при выводе формулы (3), для мгновенного ускорения а (г) в момент времени t получаем выражение

a(t) = lim h→0 (v(t + h) - v(t))/4. (4)

Посмотрим, что дает эта формула для случая свободного падения, в котором, как мы вычислили, v(t) = gt:

v(t + h) - v(t) = g(t + h)-gt = gh,

(v(t + h) - v(t))/h = g,

и, поскольку g - постоянная, то из (4) получается, что a (f) = д, т. е. ускорение свободно падающего тела постоянно и величина д есть та самая физическая постоянная, которая выражает ускорение свободного падения у поверхности Земли.

Нетрудно заметить полное сходство выражений (3), (4) и понять, что мы нашли общее математическое выражение для мгновенной скорости изменения переменной величины. Конечно, результат вычислений по формулам (3), (4), как мы убедились, зависит от конкретного вида функций s(t) или v(t), но сами операции над этими функциями, которые предписываются правыми частями формул (3), (4), одни и те же.

Обобщая сделанные наблюдения, в математическом анализе уже для любой функции у=f(х) рассматривают важную величину:

f"(x) = lim h→0 (f(x + h)-f(x))/h, (5)

которую называют производной функции f.

Производная, таким образом, играет роль скорости изменения зависимой переменной у по отношению к изменению независимой переменной х; последняя теперь уже не обязана иметь физический смысл времени.

Значение производной f"(х) зависит от значения аргумента х, поэтому, как и в случае скорости, производная f"(x) некоторой функции f(х) сама является функцией переменной x.

Например, если f(x) = x 3 , то

(f(x + h) - f(x))/h = ((x + h) 3 - x 3)/h = 3x 2 + (3xh + h 2);

далее, при h, стремящемся к нулю, величина, стоящая в последних скобках, стремится к нулю, а вся правая часть при этом стремится к значению 3x 2 . Мы нашли таким образом, что если f(x) = x 3 , то f"(x) = 3x 2 .

В формуле (5) величину h разности (x + h) - х называют приращением аргумента функции и часто обозначают символом ∆x (читается: дельта икс), а разность f(x + h) - f(x) обозначают обычно через ∆f (или, более полно через ∆f(x, ∆x)) и называют приращением функции, соответствующим данному приращению аргумента. В этих обозначениях выражение (5) приобретает вид:

f"(x) = lim ∆x→0 (f(x, ∆x) - f (x))/∆x,

f"(x) = lim ∆x→0 ∆a/∆x.

Таким образом, значение f"(x) производной функции f(x) в точке x - это предел отношения приращения функции ∆f(x, ∆x), соответствующего смещению ∆x от точки x, к приращению ∆x аргумента x, когда ∆x стремится к нулю.

Операция нахождения производной функции называется дифференцированием. С физической точки зрения, как мы теперь понимаем, дифференцирование - это определение скорости изменения переменной величины.

В дифференциальном исчислении выводятся производные основных элементарных функций. Укажем, например, что производными функций x α , sin x, cos x являются соответственно функции αx α-1 , cos x и -sin x.

В дифференциальном исчислении выводятся также следующие общие правила дифференцирования:

(cf)" = cf" (вынесение постоянного множителя);

(f 1 ± f 2)" = f" 1 ± f" 2 (дифференцирование суммы и разности функций);

(f 1 f 2)" = f" 1 f 2 + f 1 f" 2 (дифференцирование произведения функций);

(f 1 /f 2)" = (f" 1 f 2 - f 1 f" 2)/f 2 2 (дифференцирование частного функций).

Наконец, справедливо также следующее важное правило дифференцирования сложной функции: если y = f(u), а u = φ(x), то производная функции f(φ(x)) равна f"(u) φ"(x), или (f(φ (x)))" =f"(φ(x)) φ"(x).

Общие законы дифференцирования существенно облегчают отыскание производных, а для любых комбинаций элементарных функций делают дифференцирование столь же доступной операцией, как и арифметические действия для человека, знающего таблицу умножения.

Например, если f(x) = a 0 + a 1 x + a 2 x 2 + ...+ a n x n - многочлен, то f"(x) = (a 0 x 0 + a 1 x 1 + a 2 x 2 + ... + a n x n = (a 2 x 0)" + (a 1 x 1)" + (a 2 x 2)" + ... + (a n x n) = a 0 (x 0)" + a 1 (x 1)" + a 2 (x 2)" + a n (x n)" = a 0 (0 x 0-1)" + a 1 (1 x 1-1)" + a 2 (2 x 2-1)" + a n (n x n-1)" = a 1 + 2a 2 x + ... + na n x n-1 .

Или если ψ(x) = sin x 2 , то, полагая f(u) = = sin u, u = φ(x) = x 2 , получаем, что φ(x) = f(φ(x)) и, значит, ψ"(x) = f"(u) φ"(x) = cos u 2x = 2x cos x 2 .

Мы уже отмечали, что к вычислению пределов вида (3), (4), (5), т. е., как теперь можно говорить, к вычислению производной, приводили многие задачи.

Рассмотрим теперь другой классический пример уже чисто геометрического вопроса, который решается в терминах производной,- построение касательной к кривой (см. Касательная).

Требуется построить прямую T(рис. 1), касательную в точке A к кривой - графику функции y = f(x).

Как и в случае определения мгновенной скорости, построение касательной будет сопровождаться уточнением самого понятия касательной.

Пусть (x 0 , y 0) - координаты точки A. Как известно, любая не вертикальная прямая, проходящая через точку А, задается уравнением y = y 0 + k (x - x 0), где k = (y - y 0)/(x - x 0)

так называемый угловой коэффициент прямой, характеризующий ее наклон к горизонтальной оси. В нашем случае y 0 = f(x 0), поэтому уравнение прямой, проходящей через точку A, имеет вид y = f(x 0) + k (x - x 0), и мы хотим выбрать значение коэффициента k так, чтобы прямая была как можно лучше «подогнана» к кривой y = f(x), т. е. лучше всего приближала нашу кривую в окрестности точки A. Значит, мы хотим выбрать k так, чтобы приближенное равенство f(x) ≈ f(x 0) + k (x - x 0), или, что то же самое, приближенное равенство

(f(x) - f(x 0))/(x - x 0) ≈ k,

было возможно более точным при значениях х, близких к x 0 .

Но это знакомая ситуация и, с точностью до переобозначений x - x 0 = h, x = x 0 + h, это знакомое нам отношение из формулы (5), следовательно,

k = lim x→x 0 (f(x) - f(x 0))/(x - x 0) = lim h→0 (f(x 0 + h) - f(x 0)/h (6)

Итак, найдено уравнение

y = f(x 0) + f"(x 0) (x - x 0) (7)

той прямой, которая наилучшим образом приближает кривую y =f(x) в окрестности точки (x 0 ,f(0)). Эту прямую естественно считать искомой касательной к данной кривой в рассматриваемой точке.

Например, если взять параболу y = x 2 , т. е. f(x) = x 2 , то касательная к ней в точке (1; 1) в силу (7) будет задаваться уравнением y = 1 + 2(x - 1), которое можно преобразовать к более компактному виду y = 2x - 1.

Выше мы дали физическую интерпретацию производной как мгновенной скорости, а теперь на основании уравнения касательной (7) можно дать геометрическую трактовку производной. А именно, значение f"(x 0) производной f"(x) функции f(x) в фиксированной точке х = х 0 есть угловой коэффициент касательной к графику функции y = f(x) в точке (x 0 ,f(x 0)).

Это, в частности, означает, что на участках изменения переменной x, на которых f"(x) > 0, функция f(x) возрастает; там, где f"(x) < 0, функция f(x) убывает, а в точках местных максимумов или минимумов функции ее производная должна обращаться в нуль, ибо касательная в этих точках горизонтальна. Ясно также, что если в некоторой точке x = a производная обратилась в нуль, то нельзя спешить с выводом, что это точка максимума или минимума (см. точку a 4), ибо знак производной может не измениться при переходе через эту точку, и функция будет продолжать возрастать или убывать. Но если производная меняет свой знак при переходе через эту точку (см. точки a 1 , a 2 , a 3), то ясно, что при x = a функция будет иметь или местный максимум, если идет смена знака с «+» на «-» (как в точках a 1 , a 3), или местный минимум, если знаки меняются с «-» на «+» (как в точке a 2).

Сделанные наблюдения о связи знака или нулей производной с характером монотонности (возрастанием, убыванием) функции или с ее экстремумами (максимумами, минимумами) имеют многочисленные применения.

Попробуем, например, проволокой данной длины огородить такой прямоугольный участок луга, чтобы получить возможно более просторный загон для скота, т.е. среди прямоугольников с заданным периметром 2p (т. е. среди изопериметрических прямоугольников) надо найти тот, который имеет наибольшую площадь.

Если x - длина одной из сторон прямоугольника, то при указанном условии длина другой стороны равна p - x, а площадь прямоугольника равна x (p - x). Надо найти максимальное значение функции f(x) = x(p - x) на отрезке 0 ≤ x ≤ p. Поскольку при x = 0 или x = p функция, очевидно, обращается в нуль (прямоугольник вырождается в отрезок), то максимум достигается при каком-то значении x, лежащем между 0 и p. Как найти это значение?

В соответствии со сделанным выше наблюдением максимум значений функции f(x) может быть лишь при том значении x 0 , при котором скорость изменения функции равна нулю, т. е. f"(x 0) = 0.

Найдем, используя уже проведенные ранее вычисления, производную нашей функции. Поскольку f(x) = px - x 2 , то f"(x) = p - 2x и f"(x) = p - 2x 0 = 0 при x 0 = (1/2) p. По самому смыслу задачи при найденном значении аргумента x функция должна иметь именно максимум. Это можно проверить и формально:

f"(x) > 0 при x < (1/2) p и f"(x) < 0 при x > (1/2) p.

Таким образом, мы нашли, что искомым прямоугольником с наибольшей площадью является квадрат, длина стороны которого равна (1/2) p.

Решение единым методом различных задач на отыскание максимальных и минимальных значений функций, или, как их принято называть в математике, задач на отыскание экстремумов, является одним из ранних и вместе с тем наиболее популярных и впечатляющих достижений математического анализа (см. Геометрические задачи на экстремум).

До сих пор, следуя И. Ньютону, в качестве главного понятия дифференциального исчисления мы выделяли производную. Г. В. Лейбниц, другой родоначальник математического анализа, в качестве исходного выбрал понятие дифференциала, которое, как мы увидим, логически равноценно понятию производной, но не совпадает с ним. Лейбниц нашел правила вычисления дифференциалов, равноценные правилам отыскания производных, и назвал развитое им исчисление дифференциальным. Это название и сохранилось. Рассмотренные выше примеры помогут нам достаточно быстро разобраться в следующих, на первый взгляд формальных, но очень важных определениях всего дифференциального исчисления.

Функция y = f(x) называется дифференцируемой при некотором значении х ее аргумента, если приращение ∆f = f(x + h) - f(x) этой функции, отвечающее приращению h = (x + h) - x = ∆x ее аргумента x, можно представить в виде

f(x + h) - f(x) = k(x) h + α h, (8)

где k(x) - коэффициент, зависящий только от x, а α - величина, стремящаяся к нулю при h, стремящемся к нулю.

Таким образом,

f(x + h) - f(x) ≈ k(x) h, (9)

т.е. с точностью до погрешности α h, малой в сравнении с величиной h приращения аргумента, приращение f(x + h) - f(x) дифференцируемой в точке x функции можно заменить величиной k(x) h, линейной относительно приращения h аргумента x.

Эта приближающая линейная по h функция k(x) h называется дифференциалом исходной функции f в точке x и обозначается символом df или, более полно, df(x).

В каждой точке х приближающая линейная функция k(x) h, вообще говоря, своя, что отмечено зависимостью коэффициента k(x) от x.

Поделив обе части равенства (8) на h и учитывая, что величина α стремится к нулю, когда h стремится к нулю, получаем соотношение:

lim h→0 (f(x + h) - f(x))/h, (10)

позволяющее вычислять дифференциальный коэффициент k(x) и показывающее, что он просто-напросто совпадает со значением производной f"(x) функции f(x) в точке x.

Таким образом, если функция дифференцируема в точке x, то в этой точке существует указанный в (10) предел, т.е. в ней существует производная f"(x) и k(x) = f"(x).

Обратно, если у функции f(x) в точке x есть определенная равенством (5) производная, то (f(x + h) - f(x))/h = f(x) + α,

где поправка а стремится к нулю, когда h стремится к нулю. Умножая это равенство на h, получаем

f(x + h) - f(x) - f"(x) = f"(x) h + α h, (11)

и значит, функция дифференцируема в точке x.

Итак, мы убедились, что функция имеет дифференциал df = k(x) h в том, и только в том, случае, когда она имеет производную f"(x), причем df=f"(x) h. Но дифференциал как линейная по h функция k(x) h вполне определяется коэффициентом k(x) = f"(x), поэтому отыскание дифференциала функции вполне равносильно отысканию ее производной. Вот почему обе эти операции часто называют одним термином - «дифференцирование», а исчисление называют дифференциальным.

Если вместо h писать ∆x, то вместо df= f"(x) h можно записать df=f"(x) ∆х. Если взять f(x) = x, то f"(x) = 1 и dx = 1 ∆x, поэтому вместо приращения ∆x независимой переменной часто пишут дифференциал dx. В этих обозначениях получается красивая запись df=f"(x) dx дифференциала функции, от которой Лейбниц и пришел к обозначению df/dx для производной f"(x), рассматривая последнюю как отношение дифференциалов функции и ее аргумента. Заметим, что обозначение f"(x) для производной было введено лишь в 1770 г. французским математиком Ж. Л. Лагранжем, а исходным было обозначение

df/dx или df(x)/dx

Г. Лейбница, которое во многих отношениях настолько удачно, что широко используется и по сей день.

Прежде чем показать, как дифференциал можно использовать в приближенных вычислениях, проследим его геометрическую и физическую интерпретацию.

Если в равенстве (8) вместо x написать x 0 , то можно считать, что на рис. 1 левой части равенства (8) отвечает отрезок BD (это приращение ∆f функции или приращение ординаты кривой y = f(x)), дифференциалу df=f"(x) ∆x отвечает отрезок CD (это приращение ординаты касательной, приближающей нашу кривую в окрестности точки A), а остатку α h соответствует отрезок BC, который тем меньше в сравнении с отрезком CD, чем меньше приращение ∆x аргумента. Именно это обстоятельство отражают соотношение (11) и приближенное равенство (9), означающее, что ∆f ≈ df.

На физическом языке, когда f"(x) интерпретируется как скорость в момент x, a f(x + h) - f(x) - как путь, пройденный за промежуток времени h, протекший от момента x, приближенное равенство f(x + h) - f(x) ≈ f"(x) h означает, что за малое время h скорость мало меняется, поэтому пройденный путь приближенно можно найти, как и в (1), по формуле f(x) h, выражающей равномерное прямолинейное движение с постоянной скоростью f"(x).

Равенство (11) и вытекающее из него путем переобозначений соотношение

f(x) ≈ f(x 0) + f(x 0) (x - x 0) (12)

позволяют приближенно находить значения функции f(x) в точках x, близких к некоторой точке x 0 , в которой уже известны значение f(0) самой функции и значение f"(x 0) ее производной.

Например, пусть f(x) = x α и x 0 = 1. Тогда f(1)= 1 α = 1, f"(x) = αx α-1 , f"(1) = α1 α-1 = α, поэтому, полагая x = 1 + ∆, из (12) находим следующую формулу (1 + ∆) α ≈ 1 + α ∆ для приближенных вычислений, справедливую для любых (не только целых) значений α, при условии малости величины ∆. По этой формуле

7 √1,07 = (1 + 0,07) 1/7 ≈ 1 + (1/7) 0,07 = 1,01;

√0,96 = (1 + (-0,04)) 1/2 ≈ 1 + (1/2) (-0,04) = 0,98;

(1,05) 7 = (1 + 0,05) 7 ≈ 1 + 7 0,05 = 1,35.

Важную формулу (12) можно уточнить, если привлечь производные более высоких порядков, которые мы сейчас определим.

Поскольку производная f"(x) функции f(x) сама оказывается функцией аргумента x, то можно поставить вопрос о нахождении производной функции f"(x), т.е. функции (f")"(x), которая обозначается символом f"(x) и называется второй производной исходной функции f(x). Например, если s(t) - закон движения, v(t) = s"(t) - ero скорость, a a(t)=v"(t) - ускорение, то a(t) = s"(t) есть вторая производная функции s(t). Вообще можно определить производные любого порядка: n-я производная функции есть производная от ее (n - 1)-й производной.

Для обозначения производных порядка n обычно используют символы f n (x) или d n f(x)/dx

в отличие от символов f"(x), f"(x), f""(x) употребляемых только для производных малых порядков (1, 2, 3).

Зная производные функции x α , sin x, cos x, легко проверить по индукции, что производные n-го порядка от этих функций соответственно равны

α(α - 1) ... (α - n + 1)х α-n ,

sin(x + nπ/2) , cos(x + nπ/2).

Теперь вернемся к формуле (12), в которой функция f(x) приближенно заменяется стоящим в правой части многочленом 1-й степени относительно x - x 0 . Оказывается, соотношение (12) является частным случаем общего равенства

f(x) = f(x 0) + f"(x 0)/1! (x - x 0) + ... + f (n) (x 0)/n! (x - x 0) n + r n+1 (13)

называемого формулой Тейлора, в котором о величине r n+1 , называемой остаточным членом формулы Тейлора, говорится, например, что ее можно представить в виде:

r n+1 = f n+1 (ξ)/(n+1)! (x - x 0) n+1 (14)

похожем на вид предыдущих членов формулы, но только здесь f n+1 (x) вычисляется не в точке x 0 , а в некоторой точке лежащей между x 0 и x.

Но этой информации бывает достаточно для вычислительных целей. Так, если f(x) = sin x, а x 0 = 0, то вспомнив, что

sin n (x) = sin (x + nπ/2), получаем

|r n+1 | = |sin (ξ + (n+1)π/2))/(n+1)! x n+1 | ≤ |x| n+1 /(n+1)!.

Значит, если, например, |x| ≤ 1, а n = 6, то |r 7 | < 10 -3 и потому, подставив в (13) f (k) (0) = sin(/kπ/2), находим формулу:

sinx x ≈ x - x 3 /3! + x 5 /5!, (15)

позволяющую при любом x из отрезка [-1; 1] вычислить значение sin x с точностью, не худшей, чем 10 -3 .

Можно проверить, что в рассматриваемом случае r n+1 → 0 при неограниченном увеличении n, поэтому можно предложить такую запись:

sin x = x - x 3 /3! +x 5 /5 + x 7 /7 +...+ (-1) k x 2k+1 /(2k+1)! + ... . (16)

Справа в этом равенстве стоит бесконечно много слагаемых, т.е., как говорят, имеется ряд. Равенство (16) понимается, как и вообще сумма ряда, в том смысле, что при любом значении х разность между sin x и суммой конечного числа взятых по порядку слагаемых ряда стремится к нулю, если количество слагаемых неограниченно увеличивается.

Ценность формул вида (15), (16) состоит в том, что они позволяют заменить вычисление значений сложной функции вычислением значений приближающего ее многочлена. Вычисление же значений многочлена сводится к одним арифметическим операциям, которые, например, можно выполнить на электронной вычислительной машине.

Ряд (16) является частным случаем ряда

f(x 0) + f"(x 0)/1! (x - x 0) + ... + f (n) (x 0)/n! (x - x 0) n + ... (17)

который можно написать для любой бесконечно дифференцируемой функции f(x). Он называется рядом Тейлора этой функции (Б. Тейлор (1685-1731) - английский математик). Ряд Тейлора (17) не всегда имеет своей суммой породившую его функцию f(x), поэтому вопрос о сумме ряда Тейлора каждый раз требует определенного исследования, например такого, какое мы сделали выше, оценивая величину остатка r n+1 . Такими рассуждениями можно показать, что

cos x = 1 - x 2 /2! + x 4 /4 - ... + (-1) k x 2k /(2k)! + ...

при любом значении x, а равенство

(1 + x) α = 1 + α/1! x + α(α-1)/2! x 2 + ... + (α(α-1)...(α-n+1))/n! x n + ...

имеет место при |x| < 1, если α не целое, и при любом x, если α = n - целое положительное число. Но если α = n, то α(α - 1)...(α - m) = n(n - 1)...(n - m) = 0 при m > n. Значит, при целых положительных n, в частности, получается соотношение:

(1 + x) n = 1 + n/1! x + n(n - 1)/2! x 2 + ... + (n(n - 1)...(n - n + 1))/n! x n известное в математике как бином Ньютона (см. Ньютона бином).

Министерство науки и образования

Кафедра "ИиВТ"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе

По предмету: Высшая математика

На тему: Дифференциальное исчисление

г. Талдыкорган 2008 год


Введение

1. Предмет математики и основные периоды ее развития. Математика представляет собой один из самых важных фундаментальных наук. Слово "математика" произошло от греческого слова "матема", что означает знания. Возникла математика на первых же этапах человеческого развития в связи с практической деятельностью людей. С самых древних времен люди, производя различные работы, встречались с необходимостью выделения и образования тех или иных совокупностей объектов, участков земли, жилищных потребностей объектов, жилищных помещений.

Во-первых, во всех этих случаях нужно было устанавливать количественные оценки рассматриваемых множеств, измерять их площади и объемы, сравнивать, вычислять, преобразовывать. По определению, данному Ф.Энгельсом:

МАТЕМАТИКА – это наука изучает количественные отношения и пространственные формы реального мира.

2. Основные математические понятия, такие как число, геометрическая фигура, функция, производная, интеграл, случайное событие и его вероятность и т.д. За свою историю математика, которая развивалась в тесной связи с развитием производственной деятельностью людей и общественной культуры, превратилась в стройную дедуктивную науку, представленную как мощный аппарат для изучения окружающего нас мира.

Академик А.Н. Калинов выделил четыре основных развития в истории математики.

Первый – период зарождения математики, начало которого лежит и теряется в глубинах тысячелетий истории человечества и продолжается до VI – V веков до нашей эры. В этом периоде создается арифметика, а также зачатки геометрии. Математические сведения этого периода состоят в основном из свода правил решения различных практических задач.

Второй период – элементарной математики, т.е. математики, постоянных величин (VI – V вв. до н.э. – XVII в. н.э.). Уже в начале этого периода (около 300 лет до н.э.) Евклид создает теорию трех книг ("Начало Евклида" - первый из дошедших до нас больших теоретических исследований по математике), в которых, в частности изучается дедуктивным образом на базе система аксиомы вся элементарная геометрия. Изданной в IX веке сочинения ал-Хорезми "Кибат ал-Джарап ал-Мукабана" содержит общие приемы решения задач, сводящие к управлению первой и второй степени. В XV веке вместо громких выражений стали употреблять знаки + и -, знаки степеней, корней, скобки. В XVI веке Ф.Виет применяет буквы для обозначения данных и не известных величин. К середине XVII века в основном сложилась современная алгебраическая символика, и этим были созданы основы формального математического языка.

Третий период – период создания математики переменных величин (XVII век – середина XIX века). Начиная с XVII века, в связи с изучением количественного отношения в процессе их изменения, на первый план выносили понятия переменной величины и функции. В этом периоде в работах Р.Декарта на базе мирового исследования метода системных координат создается аналитическая геометрия. В ра ботах И.Ньютона и Г.В.Лейбница завершает создание дифференциального интегрального исчисления.

Четвертый период – современные математики. Его начало следует относить к двадцатым годам XIX века – этот период начинается с работ Э.Гаусса, в которых заложены идеи теории алгебраических структур, В.И.Лобачевского, который открыл первую неевклидовую геометрию – геометрию Лобачевского.

В последствии дальнейшего распространения получил аксиоматический метод, в новую фазу вступили работы по обоснованию математики, математической логики и математическому моделированию. Создание в середине прошлого века ЭВМ привело не только более к глубокому и широкому применению математики в других областях знания, в технических науках, в вопросах организации и управления производством, но и зарождению развития новых областей теоретических и прикладных математических функций. Проникновения методов современной математики и ЭВМ в другие наук и практику применяет на столько всеобщий и глубокий характер, что одно из способностей нынешнего этапа развития человеческой культуры считается процесс математизации знаний и компьютеризации всех сфер трудовой деятельности и жизни людей.

3. Понятие о математическом моделировании. При изучении количественных характеристик сложных объектов, процессов явлений, пользуются методом математического моделирования, который состоит в том, что рассматриваемые закономерности формируются на математическом языке и исследуются при помощи соответствующих математических средств. Математический модуль изучаемого объекта записывается при помощи математических символов и состоит из совокупности уравнений, неравенств, формул, алгоритмов программ (для ЭВМ), в состав которых входят переменные и постоянные величины, различные операции, функции, быть может, и их производные, и другие математические понятия. Приемами составления простейших математических моделей служит хорошо известный, из курса математики средней школы, прием решения задач при помощи уравнений и систем уравнений – полученное уравнение или система уравнений является математической моделью данной задачи. Это были примеры задач с единственным решением – детерминированных задач. Однако часто встречаются задачи, имеющие много решений. В таких случаях на практике возникает вопрос о нахождении такого решения, которое является наиболее подходящим для той или иной точки зрения. Такие решения называются оптимальными решениями.

Оптимальное решение определяется как решение, для которого некоторая функция называется целевой функцией, принимает при заданных ограничениях наибольшее и наименьшее значения. Целевую функцию составляют из условия задачи, и она выражает величину, которую нужно оптимизировать (т.е. максимизировать или минимизировать), - например, получаемую прибыль, расходы, ресурсы и т.п.

Оказывается, что широкий класс, в частности задачи управления, составляют задачи в математических моделях которых условия на переменных создают неравенство или равенство. Теория и методы решения таких задач составляет раздел математики, известный под названием "Математическое программирование".

Если ограничения и целевая функция является многочисленным первой степени (линейны), то такие задачи составляют раздел математического программирования.

Математические модели больших производных систем, как правило, имеют сложную структуру. В частности, в них количество переменных и неравенств или уравнений могут насчитывать несколько десятков и даже сотен степеней имеют довольно сложный вид. Такие задачи решаются в вычислительных центрах с использованием больших вычислительных машин.

Следуя А.Н.Тихонову, в процессе решения реальных задач методом математического моделирования вычисляем следующие пять этапов:

1. Построение качественной модели, т.е. рассматривание явлений, выделение основных факторов и установление закономерностей, которые имеют место в следующем явлении.

2. Построение математической модели, т.е. перевод на язык математических состояний, установленных качественных закономерностей явлений. На этом же этапе состояния целевая функция, т.е. такая числовая характеристика переменных, наибольшему или наименьшему значению которой соответствует лучшая ситуация с точки зрения предыдущего решения.

3. Решение получаемой задачи. В связи с тем, что часто математические модели являются довольно громадными, вычисления проводятся с помощью ЭВМ в вычислительных центрах.

4. Сопоставление результатов вычислений являются неудовлетворительными, то переходят ко второму циклу процесса моделирования, т.е. повторяют этапы 1, 2, 3 с должными уточнениями информации пока не будет достигнуто удовлетворительное соглашение с имеющимися данными о модулируемом объекте.

Математические методы необходимо применять при решении крупных задач, таких как: финансовые отношения, планирование народного хозяйства, использование атомной энергией в широких целях, создание больших воздушных и космических кораблей разного назначения, обеспечение длительной работы научных экспедиций в космосе и т.д.

Однако было бы ошибочно думать, что математические методы нужны только для решения крупных задач. При изучении наук в средней школе мы встречаемся с применениями математических методов и вычислений в решении конкретных различных задач. Подобные задачи встречаются в ежедневной работе технических специалистов, экономистов, технологов. Поэтому работникам народного хозяйства, в какой бы области они не трудились, необходимо владеть основными методами исследования и приемами вычисления, устным, письменным, и машинным счетам. Специалисты должны иметь полное представление о возможностях современной ЭВМ.

В средней школе мы ознакомились с основными теориями уравнений, их систем, векторов, дифференциального и интегрального исчислениями и их применениями в решении практических задач.

Цель изучения математики в средних специальных заведениях состоит в том, чтобы углубить знания по изученным разделам и ознакомиться с некоторыми новыми разделами математики (аналитической геометрией, теорией вероятности и др.), которые обогащают общую культуру, развивает логическое мышление, широко используется в математическом моделировании задач, с которыми встречается современный специалист в своей повседневной деятельности.

Типовой учебный план

Типовой учебный план – это документ, предназначенный для реализации государственных требований к минимуму содержания и уровня подготовки выпускных учебных заведений средне специального образования. Он определяет общий перечень дисциплин, и обязательные объемы времени для их реализации, виды и минимальную продолжительность произведенной практики, примерный перечень учебных кабинетов, лабораторий и мастерских. В учебном плане также предусматривается курсовое проектирование не более чем по трем дисциплинам во весь период обучения. Виды производственной практики и их продолжительность определяется в соответствии с типовой учебной практики по заданной специальности. График учебного процесса носит рекомендательный характер и может быть откорректирован учебным заведением при обязательном соблюдении продолжительности теоретического обучения, экзаменационных сессий, а также сроков проведения зимних и завершающих учебный год летних каникул (см. таблицу 1).



Рекомендуем почитать

Наверх