Создать ядерный атомных боеприпасов. Ядерное оружие третьего поколения. Факторы поражения атомного оружия

Похудение 16.07.2019
Похудение

Как масштабами, так и характером поражения. На расстоянии около километра от центра взрыва происходят сплошные разрушения и уничтожается все живое за укрытиями. Прежде всего такое действие обусловлено тем, что мощность ядерного взрыва намного больше, чем любого боеприпаса, созданного на основе химической взрывчатки.

Мощность ядерных взрывов измеряют в т.н. тротиловом эквиваленте - вес тринитротолуола (ТНТ), взрыв которого приводит к высвобождению эквивалентной энергии. Даже маленькие ядерные заряды имеют мощность взрыва около 1 килотонны (то есть тысячу тонн тротила). Создание такого заряда из обычной взрывчатки практически невозможно.


1. Классификация

По мощности ядерных устройств их делят на 5 групп:

  • сверхмалые (до 1 кт)
  • малые (1-10 кт)
  • средние (10-100 кт)
  • крупные (большой мощности) (100кТ-1Мт)
  • сверхбольшие (сверхбольшой мощности) (более 1 Мт)

Мощность атомной бомбы, сброшенной на Хиросиму, составляла около 15 кт. Мощным ядерным взрывом, который осуществлялся в истории, считают испытания советской водородной бомбы 30 октября 1961 на Новой земли . Его мощность составила около 50 Мт.

По типу заряда ядерное оружие подразделяется на:

В зависимости от ядерного материала, который применяется, атомные бомбы разделяют на:

Плутониевые заряды имеют преимущество в первую очередь благодаря меньшей критической массе - она ​​составляет 10-13 кг против 40 кг для урана 235. То есть вместо одного уранового заряда из плутония той же массы их можно изготовить три или четыре.

Термоядерное оружие в свою очередь делится на:

Разделение термоядерного оружия на "чистую" и "грязную" достаточно условно, поскольку даже сравнительно "чистые" заряды являются источником сильного загрязнения окружающей среды радиоактивными веществами. Но в "грязных" бомбах радиоактивных продуктов гораздо больше .

По способу применения на поле боя делится на:

  • тактическое - предназначена для поражения войск противника на фронте и ближайшем тылу
  • оперативно-тактическое - для поражения объектов противника в пределах оперативной глубины
  • стратегическое - для уничтожения промышленных центров, штабов и других объектов. С помощью современных носителей ядерного оружия (стратегические бомбардировщики, баллистические и крылатые ракеты, подводные лодки и т.п.) можно поражать цели, находящиеся в любой части Земли.

2. Факторы поражения

Ядерное оружие имеет такие факторы поражения:

3. Принцип действия

Основу любого ядерного боеприпаса составляет вещество, способное к расщепления ядра . Самыми известными среди таких веществ является изотопы урана (235 U и 233 U) и плутония (239 Pu).

Ни один из этих изотопов не встречается в природе в чистом виде. Природный уран содержит небольшое количество изотопа 235 U (менее одного процента), и его выделяют с помощью довольно сложной процедуры разделения изотопов (обогащение урана). Для ядерного оружия нужен уран с содержанием изотопа 235 U не менее 90%. Другие виды ядерного топлива утворються искусственно в ядерных реакторах .

Масса ядерного топлива должна быть достаточной, чтобы происходила самоподдерживающаяся цепная реакция , то есть превышать критическую массу . В простейших ядерных зарядах ядерное вещество укладывалась в корпус отдельными частями врозь. Каждая из частей по массе обязательно меньше критической. Эти части в нужный момент с помощью обычной химической взрывчатки сочетаются, и происходит ядерный взрыв .

Более распространенной является схема взрывной имплозии, что переводит ядерное вещество в сверхкритическое путем ее уплотнения с помощью сферического взрыва.


4. Ядерные державы

Стран, имеющих ядерное оружие, официально восемь: США , Россия , Англия , Франция , Китай , Индия , Пакистан и КНДР . 1991 году после распада Советского Союза Украина была третьей страной в мире по ядерным арсеналом. Украина отказалась от своего арсенала, который располагался на ее территории со времен Советского Союза, при условии предоставления ему соответствующих гарантий ведущими ядерными державами мира. С сентября 1993 г. во время переговоров двух президентов Украины и России была достигнута договоренность о ликвидации всего ядерного оружия, которая располагалась в Украине. Соглашение между Правительством РФ и Правительством Украины об утилизации ядерных боезарядов, а также документы об основных принципах утилизации ядерных боезарядов стратегических ядерных сил, дислоцированных в Украине, были подписаны руководителями правительств двух стран. Верховная Рада Украины приняла Постановление о ратификации Договора между СССР и США о сокращении и ограничении стратегических наступательных вооружений, подписанного в Москве 31 июля 1991 p., И протокола к нему, подписанного в Лиссабоне от имени Украины 23 мая 1992 г. с определенными оговорками, без учет которых ратификации не произойдет. Среди оговорок привлекают внимание следующие:

  • недвижимость, стратегические и тактические ядерные силы, в том числе ядерные боезаряды, находящиеся на территории Украины, объявлены собственностью Украины (пункт 1);
  • Украина, которая стала обладателем ядерного оружия, наследуемой от бывшего СССР, осуществляет административное управление стратегическими ядерными силами (пункт 3);
  • Украина как государство-владелец ядерного оружия продвигаться к безъядерному статусу и поэтапно высвобождаться от размещенного на ее территории ядерного оружия при условии получения ею надежных гарантий ее национальной безопасности, в которых ядерные государства возьмут на себя обязательство никогда не использовать ядерное оружие против Украины, не использовать против нее обычные вооруженные силы и не применять угрозы силой, уважать территориальную целостность и неприкосновенность границ Украины, воздерживаться от экономического давления с целью решения любых спорных вопросов (пункт 5);

Украина выполнит свои обязательства по Договору в предусмотренные им сроки...


5. Общемировая оценка количества ядерных вооружений

По данным Стокгольмского международного института исследования проблем мира (SIPRI) в начале 2011 года в мире насчитывалось около 20530 единиц ядерного оружия.

Приблизительная оценка мировых ядерных сил, январь 2011г .


6. Испытания

Подводное испытание ядерного оружия.

Первое испытание ядерного оружия произошло в США 16 июля 1945. Мощность атомной бомбы составляла 20 килотонн. Крупнейшая испытана бомба, "Царь-бомба мощностью 50 мегатонн, взорвалась 30 октября 1961 на Новой Земле . 1963 все ядерные державы подписали договор об ограничении испытаний ядерного оружия, по которому запрещались взрывы в атмосфере, под водой и в космосе, но разрешались подземные взрывы. Франция продолжала испытания в атмосфере до 1974 года, Китай - до 1980.

Последнее подземные испытания ядерного оружия осуществлялись: Советским Союзом - в 1990 году, Соединенным Королевством - в 1991 году, США - 1992 года, Китаем и Францией - в 1996 году. 1996 года был подписан договор о полном запрещении испытаний ядерного оружия. Индия и Пакистан не подписали этот договор и осуществили испытание 1998 года. Последнее испытание состоянию на сентябрь 2010 осуществила Северная Корея - 25 мая 2009 .


ядерное оружие, ядерное оружие россии
Я́дерное ору́жие (или а́томное ору́жие ) - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения наряду с биологическим и химическим оружием. Ядерный боеприпас - оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся в результате лавинообразно протекающих цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.
  • 1 Принцип действия
  • 2 Виды ядерных взрывов
  • 3 Поражающие факторы
  • 4 Классификация ядерных боеприпасов
  • 5 Варианты детонации ядерных боеприпасов
    • 5.1 Пушечная схема
    • 5.2 Имплозивная схема
    • 5.3 Конструкция типа «Swan»
    • 5.4 Термоядерные боеприпасы
  • 6 Средства доставки ядерных боеприпасов
  • 7 История ядерного оружия
    • 7.1 Путь к созданию атомной бомбы
    • 7.2 Послевоенное совершенствование ядерного оружия
  • 8 Ядерный клуб
  • 9 Запасы ядерного оружия в мире
  • 10 Ядерное разоружение
    • 10.1 Принцип нераспространения
    • 10.2 Договор о запрещении ядерных испытаний
    • 10.3 Российско-американские договоры
  • 11 См. также
  • 12 Примечания
  • 13 Литература
  • 14 Ссылки

Принцип действия

В основу ядерного оружия положены неуправляемая цепная реакция деления тяжёлых ядер и реакции термоядерного синтеза.

Для осуществления цепной реакции деления используются либо уран-235, либо плутоний-239, либо, в отдельных случаях, уран-233. Уран в природе встречается в виде двух основных изотопов - уран-235 (0,72 % природного урана) и уран-238 - всё остальное (99,2745 %). Обычно встречается также примесь из урана-234 (0,0055 %), образованная распадом урана-238. Однако, в качестве делящегося вещества можно использовать только уран-235. уране-238 самостоятельное развитие цепной ядерной реакции невозможно (поэтому он и распространен в природе). Для обеспечения «работоспособности» ядерной бомбы содержание урана-235 должно быть не ниже 80 %. Поэтому при производстве ядерного топлива для повышения доли урана-235 и применяют сложный и крайне затратный процесс обогащения урана. США степень обогащенности оружейного урана (доля изотопа 235) превышает 93 % и иногда доводится до 97,5 %.

Альтернативой процессу обогащения урана служит создание «плутониевой бомбы» на основе изотопа плутоний-239, который для увеличения стабильности физических свойств и улучшения сжимаемости заряда обычно легируется небольшим количеством галлия. Плутоний вырабатывается в ядерных реакторах в процессе длительного облучения урана-238 нейтронами. Аналогично уран-233 получается при облучении нейтронами тория. США ядерные боеприпасы снаряжаются сплавом 25 или Oraloy, название которого происходит от Oak Ridge (завод по обогащению урана) и alloy (сплав). состав этого сплава входит 25 % урана-235 и 75 % плутония-239.

Виды ядерных взрывов

Ядерные взрывы могут быть следующих видов:

  • высотный и воздушный взрывы (в воздухе и в космосе)
  • наземный взрыв (у самой земли)
  • подземный взрыв (под поверхностью земли)
  • надводный (у поверхности воды)
  • подводный (под водой)

Поражающие факторы

Основная статья: Поражающие факторы ядерного взрыва

При подрыве ядерного боеприпаса происходит ядерный взрыв, поражающими факторами которого являются:

  • ударная волна
  • световое излучение
  • проникающая радиация
  • радиоактивное заражение
  • электромагнитный импульс (ЭМИ)

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

  • «Атомные» - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер (урана-235 или плутония) с образованием более лёгких элементов.
  • Термоядерное оружие (также «водородные») - двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжёлых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса.

Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 40-х годах XX в., немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также изделия ядерно-технологически слаборазвитых государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва. Вопреки устойчивому стереотипу, в термоядерных (то есть двухфазных) боеприпасах бо́льшая часть энергии (до 85 %) выделяется за счёт деления ядер урана-235/плутония-239 и/или урана-238. Вторая ступень любого такого устройства может быть оснащена тампером из урана-238, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение мощности взрыва и чудовищный рост количества радиоактивных осадков. С лёгкой руки Р. Юнга, автора знаменитой книги «Ярче тысячи солнц», написанной в 1958 году по «горячим следам» Манхэттенского проекта, такого рода «грязные» боеприпасы принято называть FFF (fusion-fission-fusion) или трёхфазными. Однако этот термин не является вполне корректным. Почти все «FFF» относится к двухфазным и отличаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. Исключением являются устройства типа «Слойки» Сахарова, которые следует отнести к однофазным, хотя они имеют слоистую структуру взрывчатого вещества (ядро из плутония - слой дейтерида лития-6 - слой урана 238). США такое устройство получило название Alarm Clock (Часы с будильником). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоев при весьма «умеренной» мощности. Примером служит относительно современная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).

  • Иногда в отдельную категорию выделяется нейтронное оружие - двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50-75 % энергии получается за счёт термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счёт этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30 % от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Мощность ядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

  • сверхмалые (менее 1 кт);
  • малые (1 - 10 кт);
  • средние (10 - 100 кт);
  • крупные (большой мощности) (100 кт - 1 Мт);
  • сверхкрупные (сверхбольшой мощности) (свыше 1 Мт).

Варианты детонации ядерных боеприпасов

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

Пушечная схема

Верхний блок показывает принцип работы пушечной схемы . Второй и третий показывают возможность преждевременного развития цепной реакции до полного соединения блоков.

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой - неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. fizzle). Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Схема внутреннего устройства боеприпаса L-11 «Little Boy»

Классическим примером такой схемы является бомба «Малыш» («Little Boy»), сброшенная на Хиросиму 6 августа 1945 г. Уран для её производства был добыт в Бельгийском Конго (ныне Демократическая Республика Конго), в Канаде (Большое Медвежье озеро) и в США (штат Колорадо). бомбе «Little Boy» для этой цели использовался укороченный до 1,8 м ствол морского орудия калибра 16,4 см, при этом урановая «мишень» представляла собой цилиндр диаметром 100 мм и массой 25,6 кг, на который при «выстреле» надвигалась цилиндрическая «пуля» массой 38,5 кг с соответствующим внутренним каналом. Такая «интуитивно непонятная» конструкция была выбрана для снижения нейтронного фона мишени: в нём она находилась не вплотную, а на расстоянии 59 мм от нейтронного отражателя («тампера»). результате риск преждевременного начала цепной реакции деления с неполным энерговыделением снижался до нескольких процентов.

Позднее на базе этой схемы американцы изготовили 240 артиллерийских снарядов в трёх производственных сериях. Снаряды эти выстреливались из обычной пушки. К концу 60-х все эти заряды были уничтожены, из-за большой вероятности ядерного самоподрыва.

Имплозивная схема

Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток - ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками) (см. анимацию).

Принцип действия имплозивной схемы подрыва - по периметру делящегося вещества взрываются заряды конвенционального ВВ, которые создают взрывную волну, «сжимающую» вещество в центре и инициирующую цепную реакцию.

По такой схеме был исполнен и первый ядерный заряд (ядерное устройство «Gadget» (англ. gadget - приспособление), взорванный на башне в испытательных целях в ходе испытаний с выразительным названием «Trinity» («Троица») 16 июля 1945 года на полигоне неподалеку от местечка Аламогордо в штате Нью-Мексико), и вторая из примененных в военных целях атомных бомб - «Толстяк» («Fat Man»), сброшенная на Нагасаки 9 августа 1945 года. Фактически, «Gadget» был лишенным внешней оболочки прототипом бомбы «Толстяк». этой первой атомной бомбе в качестве нейтронного инициатора был использован так называемый «ёжик» (англ. urchin). (Технические подробности см. в статье «Толстяк».) Впоследствии эта схема была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.

В ядерных зарядах на основе реакции деления в центре полой сборки обычно размещается небольшое количество термоядерного топлива (дейтерий и тритий), которое нагревается и сжимается в процессе деления сборки до такого состояния, что в нём начинается термоядерная реакция синтеза. Эту газовую смесь необходимо непрерывно обновлять, чтобы скомпенсировать непрерывно идущий самопроизвольный распад ядер трития. Выделяющиеся при этом дополнительные нейтроны инициируют новые цепные реакции в сборке и возмещают убыль нейтронов, покидающих активную зону, что приводит к многократному росту энергетического выхода от взрыва и более эффективному использованию делящегося вещества. Варьируя содержание газовой смеси в заряде получают боеприпасы с регулируемой в широких пределах мощностью взрыва.

Конструкция типа «Swan»

Воспроизвести медиафайл Форма сборки ЯО

Следует отметить, что описанная схема сферической имплозии является архаичной и с середины 1950-х годов почти не применяется. Принцип действия конструкции типа «Swan» (англ. swan - лебедь), основан на использовании делящейся сборки особой формы, которая в процессе инициированной в одной точке одним взрывателем имплозии, сжимается в продольном направлении и превращается в надкритическую сферу. Сама оболочка состоит из нескольких слоёв взрывчатого вещества с разной скоростью детонации, которую изготавливают на основе сплава гексогена и пластика в нужной пропорции и наполнителя - пенополистирола, так что между ним и находящейся внутри ядерной сборкой остается заполненное пенополистиролом пространство. Это пространство вносит нужную задержку за счёт того, что скорость детонации взрывчатки превышает скорость движения ударной волны в пенополистироле. Форма заряда сильно зависит от скоростей детонации слоёв оболочки и скоростью распространения взрывной волны в полистироле, которая в данных условиях гиперзвуковая. Ударная волна от внешнего слоя взрывчатки достигает внутреннего сферического слоя единовременно по всей поверхности. Существенно более лёгкий тампер выполняется не из урана-238, а из хорошо отражающего нейтроны бериллия. Можно предположить, что необычное название данной конструкции - «Лебедь» (первое испытание - Inca в 1956 г.) было подсказано формой шеи лебедя. Таким образом оказалось возможным отказаться от сферической имплозии и, тем самым, решить крайне сложную проблему субмикросекундной синхронизации взрывателей на сферической сборке и таким образом упростить и уменьшить диаметр имплозивного ядерного боеприпаса с 2 м у бомбы «Толстяк» до 30 см и менее. На случай случайного срабатывания детонатора существует несколько превентивных мер предотвращающих равномерное обжатие сборки и её разрушение без ядерного взрыва.

Термоядерные боеприпасы

Основная статья: Термоядерное оружие

Мощность ядерного заряда, работающего исключительно на принципе деления тяжёлых элементов, ограничивается десятками килотонн. Энерговыход (англ. yield) однофазного боеприпаса, усиленного термоядерным топливом внутри делящейся сборки (Boosted fission weapon (англ.)русск.), может достигать сотен килотонн. Создать однофазное устройство мегатонного класса практически невозможно, увеличение массы делящегося вещества не решает проблему. Дело в том, что энергия, выделяющаяся в результате цепной реакции, раздувает сборку со скоростью порядка 1000 км/с, поэтому она быстро становится докритической и бо́льшая часть делящегося вещества не успевает прореагировать. Например, в сброшенной на город Нагасаки бомбе «Толстяк» успело прореагировать не более 20 % из 6,2 кг заряда плутония, а в уничтожившей Хиросиму бомбе «Малыш» с пушечной сборкой распалось только 1,4 % из 64 кг обогащенного примерно до 80 % урана. Самый мощный в истории однофазный (британский) боеприпас, взорванный в ходе испытаний Orange Herald в 1957 г., достиг мощности 720 кт.

Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.

В двухфазном устройстве первая стадия физического процесса (primary ) используется для запуска второй стадии (secondary ), в ходе которой выделяется наибольшая часть энергии. Такую схему принято называть конструкцией Теллера-Улама.

Энергия от детонации первичного заряда передаётся через специальный канал («interstage») в процессе радиационной диффузии квантов рентгеновского излучения и обеспечивает детонацию вторичного заряда посредством радиационной имплозии запального плутониевого или уранового элемента. Последний также служит дополнительным источником энергии вместе с нейтронным отражателем из урана-235 или урана-238, причём совместно они могут давать до 85 % от общего энерговыхода ядерного взрыва. При этом термоядерный синтез служит в большей мере источником нейтронов для деления тяжёлых ядер, а под воздействием нейтронов деления на ядра Li в составе дейтерида лития образуется тритий, который сразу вступает в реакцию термоядерного синтеза с дейтерием.

В первом двухфазном экспериментальном устройстве Иви Майк (Ivy Mike) (10,5 Мт в испытании 1952 г.) вместо дейтерида лития использовались сжиженный дейтерий и тритий, но в последующем крайне дорогой чистый тритий непосредственно в термоядерной реакции второй стадии не применялся. Интересно отметить, что только термоядерный синтез обеспечил 97 % основного энерговыхода экспериментальной советской «Царь-бомбе» (она же «Кузькина мать»), взорванной в 1961 г. с абсолютно рекордным выходом энергии около 58 Мт. Наиболее эффективным по отношению мощность/вес двухфазным боеприпасом стал американский «монстр» Mark 41 с мощностью 25 Мт, который выпускался серийно для развёртывания на бомбардировщиках B-47, B-52 и в варианте моноблока для МБР Титан-2. Нейтронный отражатель этой бомбы был сделан из урана-238, поэтому она никогда не испытывалась в полном масштабе, во избежание масштабного радиационного загрязнения. При его замене на свинцовый мощность данного устройства понижалась до 3 Мт.

    Конструкция Теллера-Улама для двухфазного боеприпаса («термоядерная бомба»).

    Предполагаемая схема двухфазной боеголовки W88, развёрнутой на БРПЛ Трайдент в 90-х. Конструкция Теллера-Улама. Мощность взрыва 475 Кт.

Средства доставки ядерных боеприпасов

Средством доставки ядерного боеприпаса к цели может быть практически любое тяжелое вооружение. частности, тактическое ядерное оружие с 1950-х существует в форме артиллерийских снарядов и мин - боеприпасов для ядерной артиллерии. Носителями ядерного оружия могут быть реактивные снаряды РСЗО, но пока ядерных снарядов для РСЗО не существует. Однако, габариты многих современных ракет РСЗО позволяют разместить в них ядерный заряд, аналогичный применяемому ствольной артиллерией, в то время как некоторые РСЗО, например российский «Смерч», по дальности практически сравнялись с тактическими ракетами, другие же (например, американская система MLRS) способны запускать со своих установок тактические ракеты. Тактические ракеты и ракеты большей дальности являются носителями ядерного оружия. Договорах по ограничению вооружений в качестве средств доставки ядерного оружия рассматриваются баллистические ракеты, крылатые ракеты и самолёты. Исторически самолёты были первыми средствами доставки ядерного оружия, и именно с помощью самолётов было выполнено единственное в истории боевое ядерное бомбометание :

  1. На японский город Хиросима 6 августа 1945 года. 08:15 местного времени самолёт B-29 «Enola Gay» под командованием полковника Пола Тиббетса, находясь на высоте свыше 9 км, произвёл сброс атомной бомбы «Малыш» («Little Boy») на центр Хиросимы. Взрыватель был установлен на высоту 600 метров над поверхностью; взрыв, эквивалентом от 13 до 18 килотонн тротила, произошёл через 45 секунд после сброса.
  2. На японский город Нагасаки 9 августа 1945 года. 10:56 самолёт В-29 «Bockscar» под командованием пилота Чарльза сбросил на Нагасаки бомбу «Толстяк» («Fat man»). Взрыв произошёл в 11:02 местного времени на высоте около 500 метров. Мощность взрыва составила 21 килотонну.

Развитие систем ПВО и ракетного оружия выдвинуло на первый план именно ракеты.

Договор СНВ-1 делил все баллистические ракеты по дальности на:

  • Межконтинентальные (МБР) с дальностью более 5500 км;
  • Ракеты средней дальности (от 1000 до 5500 км);
  • Ракеты меньшей дальности (менее 1000 км).

Договор РСМД, ликвидируя ракеты средней и меньшей (от 500 до 1000 км) дальности, вообще исключил из регулирования ракеты с дальностью до 500 км. этот класс попали все тактические ракеты, и в настоящий момент такие средства доставки активно развиваются.

И баллистические, и крылатые ракеты могут быть размещены на подводных лодках, обычно атомных. этом случае подлодка называется, соответственно ПЛАРБ и ПЛАРК. Кроме того, на многоцелевых подводных лодках могут размещаться ядерные торпеды. Ядерные торпеды могут использоваться как для атаки морских целей, так и побережья противника. Так, академиком Сахаровым был предложен проект торпеды Т-15 с зарядом ~100 мегатонн.

Кроме ядерных зарядов, доставляемых техническими носителями, существуют ранцевые боеприпасы небольшой мощности, переносимые человеком, и предназначенные для использования диверсионными группами.

По назначению средства доставки ядерного оружия делятся на:

  • тактическое, предназначенное для поражения живой силы и боевой техники противника на фронте и в ближайших тылах. К тактическому ядерному оружию обычно относят и средства поражения морских, воздушных, и космических целей;
  • оперативно-тактическое - для уничтожения объектов противника в пределах оперативной глубины;
  • стратегическое - для уничтожения административных, промышленных центров и иных стратегических целей в глубоком тылу противника.

    Запуск БРПЛ «Трайдент II» из подводного положения. Ракета может быть оснащена 8 боеголовками W88

    Боевой железнодорожный ракетный комплекс БЖРК 15П961 «Молодец» c межконтинентальной ракетой с ядерной боеголовкой. Снят с вооружения в 90-х годах.

История ядерного оружия

Основная статья: История ядерного оружия

Путь к созданию атомной бомбы

  • В 1896 году французский химик Антуан Анри Беккерель открывает радиоактивность урана.
  • В 1899 году Эрнест Резерфорд обнаруживает альфа- и бета-лучи. 1900 г. открыто гамма-излучение.
  • В эти годы открыты многие радиоактивные изотопы химических элементов: в 1898 г. Пьером Кюри и Марией Кюри открыты полоний и радий, в 1899 Резерфордом открыт радон, а Дебьерном - актиний.
  • В 1903 году Резерфорд и Фредерик Содди опубликовали закон радиоактивного распада.
  • В 1921 г. Отто Ган фактически открывает ядерную изомерию.
  • В 1932 г. Джеймс Чедвик открыл нейтрон, а Карл Д. Андерсон - позитрон.
  • В том же 1932 году в США Эрнест Лоуренс запустил первый циклотрон, а в Англии Эрнест Уолтон и Джон Кокрофт впервые расщепили ядро атома: они разрушили ядро лития, обстреливая его на ускорителе протонами. Одновременно такой эксперимент был проведен в СССР.
  • В 1934 г. Фредерик Жолио-Кюри открыл искусственную радиоактивность, а Энрико Ферми разработал методику замедления нейтронов. 1936 г. им было открыто селективное поглощение нейтронов.
  • В 1934 г. физик из Венгрии Лео Силард запатентовал в Англии атомную бериллиевую бомбу.
  • В 1938 г. Отто Ган, Фриц Штрассман и Лиза Мейтнер открывают расщепление ядра урана при поглощении им нейтронов. С этого и начинается разработка ядерного оружия.
  • В 1939 г. Фредерик Жолио-Кюри запатентовал конструкцию урановой бомбы.
  • В 1940 г. Г. Н. Флёров и К. А. Петржак, работая в ЛФТИ, открыли спонтанное деление ядра урана.
  • В июне 1940 г. в США был образован Национальный комитет по оборонным исследованиям, Комитет по урану вошёл в его состав в качестве подкомитета.
  • Весной 1941 г. Ферми завершил разработку теории цепной ядерной реакции.
  • 20 сентября 1941 г. в Англии на совещании Комитетом начальников штабов вынесено решение о немедленном начале строительства завода по изготовлению атомных бомб.
  • 6 декабря 1941 г. в США принято решение о выделении средств и ресурсов на создание ядерного оружия.
  • Первый квартал 1942 г. - английский военный кабинет занимается вопросами организации производства урановых бомб.
  • В июне 1942 г. Ферми и Г. Андерсоном в ходе опытов был получен коэффициент размножения нейтронов больше единицы, что открыло путь к созданию ядерного реактора.
  • 2 декабря 1942 г. в США заработал первый в мире ядерный реактор, осуществлена первая самоподдерживающаяся цепная ядерная реакция.
  • 17 сентября 1943 г. стартовал «Манхэттенский проект».
  • 16 июля 1945 г. в США в пустыне под Аламогордо (штат Нью-Мексико) испытано первое ядерное взрывное устройство «Gadget» (одноступенчатое, на основе плутония).
  • В августе 1945 г. на японские города американцами были сброшены первые атомные бомбы «Малыш» (6 августа, Хиросима) и «Толстяк» (9 августа, Нагасаки). См. Атомные бомбардировки Хиросимы и Нагасаки.

Послевоенное совершенствование ядерного оружия

  • Июль 1946 г. США проводят операцию «Перекрёстки» на атолле Бикини: 4-й и 5-й атомные взрывы в истории человечества.
  • Весной 1948 г. американцы провели операцию «Песчаник». Подготовка к ней шла с лета 1947 г. ходе операции были испытаны 3 усовершенствованные атомные бомбы.
  • 29 августа 1949 г. СССР провел испытания своей атомной бомбы РДС-1, разрушив ядерную монополию США.
  • В конце января - начале февраля 1951 г. США открыли Ядерный полигон в Неваде и провели там операцию «Рейнджер» из 5 ядерных взрывов.
  • В апреле - мае 1951 г. США провели операцию «Парник»).
  • В октябре - ноябре 1951 г. на полигоне в Неваде США провели операцию «Бастер-Джангл».
  • 1 ноября 1952 г. США провели на атолле Эниветок первое испытание термоядерного устройства мегатонного класса - Ivy Mike.
  • В 1953 году СССР провёл испытания первого транспортабельного термоядерного устройства.
  • 1 марта 1954 г. на атолле Бикини проведено испытаний Castle Bravo - самого мощного из взорванных США зарядов. Мощность взрыва достигла 15 мегатонн, в 2,5 раза превысив расчётную. Последствием взрыва стал инцидент с японским рыболовецким судном «Фукурю-Мару», вызвавший перелом в общественном восприятии ядерного оружия.
  • В октябре 1961 г. СССР провёл испытания Царь-бомбы, самого мощного термоядерного заряда в истории.

Ядерный клуб

Основная статья: Ядерный клуб

«Ядерный клуб » - неофициальное название группы стран, обладающих ядерным оружием. неё входят США (c 1945), Россия (изначально Советский Союз: с 1949), Великобритания (1952), Франция (1960), КНР (1964), Индия (1974), Пакистан (1998) и КНДР (2006). Также имеющим ядерное оружие считается Израиль.

«Старые» ядерные державы США, Россия, Великобритания, Франция и Китай являются т. н. ядерной пятёркой - то есть государствами, которые считаются «легитимными» ядерными державами согласно Договору о нераспространении ядерного оружия. Остальные страны, обладающие ядерным оружием, называются «молодыми» ядерными державами.

Кроме того, на территории нескольких государств, которые являются членами НАТО и другими союзниками, находится или может находиться ядерное оружие США. Некоторые эксперты считают, что в определенных обстоятельствах эти страны могут им воспользоваться.

Испытание термоядерной бомбы на атолле Бикини, 1954 г. Мощность взрыва 11 Мт, из которых 7 Мт выделилось от деления тампера из урана-238

США осуществили первый в истории ядерный взрыв мощностью 20 килотонн 16 июля 1945 года. 6 и 9 августа 1945 ядерные бомбы были сброшены, соответственно, на японские города Хиросима и Нагасаки. Первое в истории испытание термоядерного устройства было проведено 1 ноября 1952 года на атолле Эниветок.

Взрыв первого советского ядерного устройства на Семипалатинском полигоне 29 августа 1949 года, 10:05.

СССР испытал своё первое ядерное устройство мощностью 22 килотонны 29 августа 1949 года на Семипалатинском полигоне. Испытание первой в мире термоядерной бомбы - там же 12 августа 1953 года. Россия стала единственным международно-признанным наследником ядерного арсенала Советского Союза.

Великобритания произвела первый надводный ядерный взрыв мощностью около 25 килотонн 3 октября 1952 года в районе островов Монте-Белло (северо-западнее Австралии). Термоядерное испытание - 15 мая 1957 года на острове Рождества в Полинезии.

Франция провела наземные испытания ядерного заряда мощностью 20 килотонн 13 февраля 1960 года в оазисе Регган в Алжире. Термоядерное испытание - 24 августа 1968 года на атолле Муруроа.

Китай взорвал ядерную бомбу мощностью 20 килотонн 16 октября 1964 года в районе озера Лобнор. Там же была испытана термоядерная бомба 17 июня 1967 года.

Индия произвела первое испытание ядерного заряда мощностью 20 килотонн 18 мая 1974 года на полигоне Покхаран в штате Раджастхан, но официально не признала себя обладателем ядерного оружия. Это было сделано лишь после подземных испытаний пяти ядерных взрывных устройств, включая 32-килотонную термоядерную бомбу, которые прошли на полигоне Покхаран 11-13 мая 1998 года.

Пакистан провёл подземные испытания шести ядерных зарядов 28 и 30 мая 1998 года на полигоне Чагай-Хиллз в провинции Белуджистан в качестве симметричного ответа на индийские ядерные испытания 1974 и 1998 годов.

КНДР заявила о создании ядерного оружия в середине 2005 года и провела первое подземное испытание ядерной бомбы предположительной мощностью около 1 килотонны 9 октября 2006 года (по-видимому, взрыв с неполным энерговыделением) и второе мощностью примерно 12 килотонн 25 мая 2009 года. 12.02.2013 была испытана бомба мощностью 6-7 килотонн.

Израиль не комментирует информацию о наличии у него ядерного оружия, однако, по единодушному мнению всех экспертов, владеет ядерными боезарядами собственной разработки с конца 1960-х - начала 1970-х гг.

Небольшой ядерный арсенал был у ЮАР, но все шесть собранных ядерных зарядов были добровольно уничтожены при демонтаже режима апартеида в начале 1990-х годов. Полагают, что ЮАР проводила собственные или совместно с Израилем ядерные испытания в районе острова Буве в 1979 году. ЮАР - единственная страна, которая самостоятельно разработала ядерное оружие и при этом добровольно от него отказалась.

Украина, Белоруссия и Казахстан, на территории которых находилась часть ядерного вооружения СССР, после подписания в 1992 году Лиссабонского протокола были объявлены странами, не имеющими ядерного оружия, и в 1994-1996 годах передали все ядерные боеприпасы Российской Федерации.

По различным причинам добровольно отказались от своих ядерных программ Бразилия, Аргентина, Ливия (на разных стадиях; ни одна из этих программ не была доведена до конца). Недобровольно (военной силой со стороны Израиля) была прекращена ядерная программа Ирака. разные годы подозревалось, что ядерное оружие могут разрабатывать ещё несколько стран. настоящее время предполагается, что наиболее близок к созданию собственного ядерного оружия Иран. Также по мнению многих специалистов, некоторые страны (например, Япония и Германия), не обладающие ядерным оружием, по своим научно-производственным возможностям способны создать его в течение короткого времени после принятия политического решения и финансирования.

Исторически потенциальную возможность создать ядерное оружие второй или даже первой имела нацистская Германия. Однако Урановый проект до разгрома Третьего Рейха завершён не был по ряду причин.

Запасы ядерного оружия в мире

Количество боеголовок (активных и в резерве)

1947 1952 1957 1962 1967 1972 1977 1982 1987 1989 1992 2002 2010 2015
США 32 1005 6444 ≈26000 >31255 ≈27000 ≈25000 ≈23000 ≈23500 22217 ≈12000 ≈10600 ≈8500 ≈7200
СССР/Россия - 50 660 ≈4000 8339 ≈15000 ≈25000 ≈34000 ≈38000 ≈25000 ≈16000 ≈11000 ≈7500
Великобритания - - 20 270 512 ≈225 215
Франция - - - 36 384 ≈350 300
Китай - - - - 25 ≈400 ≈400 250
Израиль - - - - - ≈200 ≈150 80
Индия - - - - - - ≈100 ≈100 ≈100
Пакистан - - - - - - - - - - - ≈100 ≈110 ≈110
КНДР - - - - - - - - - - - - ≈5-10 <10
ЮАР - - - - - - - - - 6 - - - -
Итого 32 1055 7124 ≈30000 >39925 ≈42000 ≈50000 ≈57000 63484 <40000 <28300 <20850 ≈15700

Примечание: Данные по России c 1991 г. и США c 2002 г. включают только боезаряды стратегических носителей; оба государства располагают также значительным количеством тактического ядерного оружия, которое трудно поддаётся оценке.

Ядерное разоружение

Осознание значительности угрозы ядерного оружия для человечества и цивилизации привели к выработке ряда мер международного характера с целью минимизации риска его распространения и применения.

Принцип нераспространения

Основная статья: Договор о нераспространении ядерного оружия

Физические принципы построения ядерного оружия общедоступны. Также не являются секретом общие принципы конструирования различных типов зарядов. Однако конкретные технологические решения повышения эффективности зарядов, конструкция боеприпасов, методы получения материалов с требуемыми свойствами чаще всего публично недоступны.

Основой принципа нераспространения ядерного оружия является трудоёмкость и затратность разработки, проистекающая из масштабности научных и промышленных задач: приобретение делящихся материалов; разработка, постройка и эксплуатация заводов по обогащению урана и реакторов для наработки оружейного плутония; испытания зарядов; масштабная подготовка учёных и специалистов; разработка и постройка средств доставки боеприпасов и т. п. Скрыть такие работы, ведущиеся на протяжении значительного времени, практически невозможно. Поэтому страны, обладающие ядерными технологиями, договорились о запрете бесконтрольного распространения материалов и оборудования для создания оружия, компонентов оружия и самого оружия.

Договор о запрещении ядерных испытаний

В рамках принципа нераспространения был принят договор о запрещении испытаний ядерного оружия.

Российско-американские договоры

С целью ограничения наращивания вооружений, уменьшения угрозы случайного их применения и поддержания ядерного паритета СССР и США выработали ряд соглашений, оформленных в виде договоров:

  • Договоры об ограничении стратегических вооружений в 1972 и 1979 годах (ОСВ-I и ОСВ-II).
  • Ряд договоров об ограничении стратегических наступательных вооружений (СНВ-I (1991), СНВ-II (1993), СНП (2002) и СНВ-III (2010)).
  • Договор о ликвидации ракет средней и меньшей дальности (1987).
  • Договор об ограничении систем противоракетной обороны (1972).

См. также

  • Ядерная стратегия
  • Стратегические ядерные силы Российской Федерации
  • Ядерный арсенал США
  • Ядерная зима
  • Ядерная мина
  • Ядерный чемоданчик
  • Царь-бомба
  • Граунд Зеро
  • Договор о нераспространении ядерного оружия
  • Договор о всеобъемлющем запрещении ядерных испытаний
  • МАГАТЭ
  • Радиологическое оружие
  • Термоядерное оружие
  • Нейтронное оружие
  • Группа ядерных поставщиков
  • Атмосферные ядерные испытания США
  • Белый поезд
  • Ядерное оружие направленного действия
  • Изомерия атомных ядер, Гафниевая бомба

Примечания

  1. Виды ядерных взрывов // Оружие массового поражения - Nano-Planet.org, 12.05.2014.
  2. Средства доставки ядерного оружия. Основные характеристики. Факторы, влияющие на их эффективность
  3. Документы, касающиеся договора СНВ-2
  4. Договор между Союзом Советских Социалистических Республик и Соединенными Штатами Америки о ликвидации их ракет средней дальности и меньшей дальности
  5. Неофициальные ядерные державы Европы
  6. Стратегические ядерные силы СССР и России
  7. Страны, имевшие или имеющие программы создания ядерного оружия
  8. «Бюллетень ядерных испытаний» и Federation of American Scientists: Status of World Nuclear Forces. Fas.org. Проверено 4 мая 2010. Архивировано из первоисточника 28 мая 2012. , если не указано иное
  9. 1 2 Пентагон обнародовал данные о величине ядерного арсенала США
  10. Великобритания раскрыла данные о своем ядерном арсенале, Lenta.Ru (26.05.2010). Проверено 26 мая 2010.
  11. UK to be "more open" about nuclear warhead levels, BBC News (26.05.2010).
  12. Договор о нераспространении ядерного оружия
  13. ПРАВОВЫЕ ВОПРОСЫ ЯДЕРНОГО НЕРАСПРОСТРАНЕНИЯ

Литература

  • Атомное пламя // Ардашев А. Н. Огнемётно-зажигательное оружие: иллюстрированный справочник. - Агинское, Балашиха: АСТ: Астрель, 2001. - Гл. 5. - 288 с. - (Военная техника). - 10 100 экз. - ISBN 5-17-008790-X.
  • Атомная бомба // Пономарёв Л. И. Под знаком кванта / Леонид Иванович Пономарёв. - 1984, 1989, 2007.
  • Памятка населению по защите от атомного оружия. - 2-е изд. - Москва, 1954.
  • Юнг Р. Ярче тысячи солнц / Роберт Юнг. - М., 1960.
  • Мания Х. История атомной бомбы / Хуберт Мания. - Москва: Текст, 2012. - 352 с. - (Краткий курс). - 3 000 экз. - ISBN 978-5-7516-1005-0.
  • Яблоков А. В. Неизбежная связь ядерной энергетики с атомным оружием: доклад. - Беллона, 2005.

История создания атомной бомбы, и в частности оружия, начинается в 1939 году, с открытия, сделанного Жолио Кюри. Именно с этого момента ученые осознали, что цепная реакция урана может стать не только источником огромной энергии, но и страшным оружием. И так, в основе устройства атомной бомбы лежит использование ядерной энергии, которая выделяется при цепной ядерной реакции.

Последнее подразумевает процесс деления тяжелых ядер или синтеза легких ядер. В результате чего, атомная бомба является оружием массового поражения, за счет того, что в кратчайший промежуток времени происходит выделение огромного количества внутриядерной энергии в небольшом пространстве. При том входе данного процесса принято выделять два ключевых места.

Первое, это центр ядерного взрыва, где непосредственно протекает данный процесс. И, второе, это эпицентр, который по своей сути представляет проекцию самого процесса на поверхность (землю или воду). Также ядерный взрыв высвобождает такое количество энергии, что при ее проекции на землю появляются сейсмический толчки. И дальность распространения подобных колебаний невероятно велика, хотя ощутимый урон окружающей среде они наносят лишь на расстоянии всего нескольких сотен метров.

Далее стоит отметить, что ядерный взрыв сопровождается и высвобождением большого количества тепла и света, которые и образует яркую вспышку. Причем по своей мощности она превышает во множество раз мощность лучей солнца. Таким образом, поражение светом и теплом можно получить на расстоянии даже нескольких километров.

Но одним высоко опасным типом поражения атомной бомбы является радиация, которая образуется при ядерном взрыве. Длительность воздействия этого явления невысока, и составляет в среднем 60 секунд, вот только проникающая способность этой волны поражает.

Что касается устройства атомной бомбы, то она включает в себя целый ряд различных компонентов. Как правило, выделяют два основных элемента данного типа оружия: корпус и систему автоматики.

В корпусе находится ядерный заряд и автоматика, и именно он выполняют защитную функцию по отношению к различным видам воздействия (механического, теплового и так далее). А роль системы автоматики заключается в том, чтобы взрыв произошел в четко заданное время, а не раньше или позже. Состоит система автоматики из таких систем как: аварийный подрыв; предохранения и взведения; источник питания; датчики подрыва и подрыва заряда.

А вот доставляются атомные бомбы с помощью баллистических, крылатых и зенитных ракет. Т.е. ядерные боеприпасы могут являться элементом авиабомбы, торпеда, фугаса и так далее.

И даже системы детонирования для атомной бомбы могут быть разными. Одной из наиболее простых систем является инжекторная, когда толчком для ядерного взрыва становится попадания снаряда в цель, с последующим образованием сверхкритической массы. Именно к такому типу атомных бомб относилась первая взорванная бомба над Хиросимой в 1945 году, содержащая уран. В отличие от нее, бомба, сброшенная на Нагасаки в том же году, была плутониевая.

После такой яркой демонстрации мощности и силы атомного оружия, оно моментально попало в разряд самого опасного средства массового поражения. Говоря о типах атомного оружия, следует упомянуть, что они определяются размером калибра. Так, в настоящий момент выделяют три основных калибра для данного оружия, это малый, крупный и средний. Мощность взрыва, чаще всего, характеризуют тротиловым эквивалентом. Так, например, малый калибр атомного оружия подразумевает мощность заряда, равной нескольким тысячам тонн тротила. А более мощное атомное оружие, точнее средний калибр, составляет уже десятки тысяч тонн тротила, и, наконец, последний уже измеряется в миллионах. Но при этом не стоит путать понятие атомного и водородного оружия, которое в целом и называют ядерным оружием. Основное отличие атомного оружия от водородного, это реакция деления ядер ряда тяжелых элементов, таких как плутоний и уран. А водородное оружие подразумевает процесс синтеза ядер атомов одного элемента в другой, т.е. гелия из водорода.

Первое испытание атомной бомбы

Первое испытание атомного оружия было проведено американскими вооруженными силами 16 июля 1945 года в местечке под названием Алмогордо, показавшее всю мощь атомной энергии. После чего, атомные бомбы, имеющиеся у сил США, были погружены на военный корабль и отправлены к берегам Японии. Отказ правительства Японии от мирного диалога позволил в действии показать всю мощь атомного оружия, жертвами которого сначала стал город Хиросима, а чуть позднее Нагасаки. Так, 6 августа 1945 года впервые атомное оружие было применено на мирных жителях, в результате чего город практически был стерт в лица земли ударными волнами. Больше половины жителей города погибли впервые дни атомной атаки, и составило в общем, около двухсот сорока тысяч человек. А спустя всего четыре дня, военную базу США покинули сразу два самолета с опасным грузом на борту, целями которых были Кокура и Нагасаки. И если Кокура, охваченная непроглядным дымом представляла собой трудную цель, то в Нагасаки цель была поражена. В конечном счете, от атомной бомбы в Нагасаки в первые дни погибло 73 тысячи человека от полученных повреждений и облучения к этим жертвам добавился список уже в тридцать пять тысяч человек. При этом смерть последних жертв была довольно мучительной, так как действие радиации невероятно губительно.

Факторы поражения атомного оружия

Таким образом, атомное оружие имеет несколько типов поражения; светового, радиоактивного, ударная волна, проникающая радиация и электромагнитный импульс. При образовании светового излучения после взрыва ядерного оружия, которое позднее превращается в губительное тепло. Далее наступает очередь радиоактивного заражения, которое опасно лишь впервые часы после взрыва. Ударную волну принято считать наиболее опасным этапом ядерного взрыва, ведь она в считанные секунды наносит огромный вред различным строениям, техники и людям. А вот проникающая радиация очень опасна для человеческого организма, и нередко становится причиной лучевой болезни. Электромагнитный импульс поражает технику. В совокупности все это и делает очень опасным атомное оружие.

Великобритания Румыния Германия Саудовская Аравия Египет Сирия Израиль США Индия Норвегия Ирак Украина Иран Франция Канада Казахстан Швеция Китай ЮАР КНДР Япония Польша

При подрыве ядерного боеприпаса происходит ядерный взрыв , поражающими факторами которого являются:

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

  • «Атомные» - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжелых ядер (урана-235 или плутония) с образованием более лёгких элементов.
  • Термоядерное оружие (также «водородные») - двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжелых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса.

Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 40-х годах XX в., немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также изделия ядерно-технологически слаборазвитых государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва. Вопреки устойчивому стереотипу, в термоядерных (то есть двухфазных) боеприпасах бо́льшая часть энергии (до 85%) выделяется за счет деления ядер урана-235/плутония-239 и/или урана-238. Вторая ступень любого такого устройства может быть оснащена тампером из урана-238, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение мощности взрыва и чудовищный рост количества радиоактивных осадков. С легкой руки Р. Юнга, автора знаменитой книги Ярче тысячи солнц, написанной в 1958 году по «горячим следам» Манхэттенского проекта , такого рода «грязные» боеприпасы принято называть FFF (fusion-fission-fusion) или трехфазными. Однако этот термин не является вполне корректным. Почти все «FFF» относится к двухфазным и отличаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. Исключением являются устройства типа «Слойки» Сахарова , которые следует отнести к однофазным, хотя они имеют слоистую структуру взрывчатого вещества (ядро из плутония - слой дейтерида лития-6 - слой урана 238). В США такое устройство получило название Alarm Clock (Часы с будильником). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоев при весьма «умеренной» мощности. Примером служит относительно современная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).

  • Иногда в отдельную категорию выделяется нейтронное оружие - двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50-75% энергии получается за счет термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счет этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30% от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Пушечная схема

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося вещества докритической массы («пуля») в другой - неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится сверхкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (fizzle или «пшик»). Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Классическим примером такой схемы является бомба «Малыш » («Little Boy»), сброшенная на Хиросиму 6 августа г. Уран для её производства был добыт в Бельгийском Конго (ныне Демократическая Республика Конго), в Канаде (Большое Медвежье озеро) и в США (штат Колорадо). В бомбе «Little Boy» для этой цели использовался укороченный до 1,8 м ствол морского орудия калибра 16,4 см, при этом урановая «мишень» представляла собой цилиндр диаметром 100 мм, на который при «выстреле» надвигалась цилиндрическая «пуля» сверхкритической массы (38,5 кг) с соответствующим внутренним каналом. Такой «интуитивно непонятный» дизайн был сделан для снижения нейтронного фона мишени: в нём она находилась не вплотную, а на расстоянии 59 мм от нейтронного отражателя («тампера»). В результате риск преждевременного начала цепной реакции деления с неполным энерговыделением снижался до нескольких процентов.

Имплозивная схема

Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток - ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками) (см. анимацию).

По такой схеме был исполнен и первый ядерный заряд (ядерное устройство «Gadget» (англ. gadget - приспособление), взорванный на башне в испытательных целях в ходе испытаний с выразительным названием «Trinity» («Троица») 16 июля 1945 года на полигоне неподалеку от местечка Аламогордо в штате Нью-Мексико), и вторая из примененных по назначению атомных бомб - «Толстяк » («Fat Man»), сброшенная на Нагасаки. Фактически, «Gadget» был лишенным внешней оболочки прототипом бомбы «Толстяк». В этой первой атомной бомбе в качестве нейтронного инициатора был использован так называемый «ёжик» (англ. urchin ). (Технические подробности см. в статье «Толстяк ».) Впоследствии эта схема была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.

В ядерных зарядах на основе реакции деления в центре полой сборки обычно размещается небольшое количество термоядерного топлива (дейтерий и тритий), которое нагревается и сжимается в процессе деления сборки до такого состояния, что в нём начинается термоядерная реакция синтеза. Эту газовую смесь необходимо непрерывно обновлять, чтобы скомпенсировать непрерывно идущий самопроизвольный распад ядер трития. Выделяющиеся при этом дополнительные нейтроны инициируют новые цепные реакции в сборке и возмещают убыль нейтронов, покидающих активную зону, что приводит к многократному росту энергетического выхода от взрыва и более эффективному использованию делящегося вещества. Варьируя содержание газовой смеси в заряде получают боеприпасы с регулируемой в широких пределах мощностью взрыва.

Следует отметить, что описанная схема сферической имплозии является архаичной и с середины 1950-х годов почти не применяется. Реально применяемый дизайн Swan (англ. swan - лебедь), основан на использовании эллипсоидальной делящейся сборки, которая в процессе двухточечной, то есть инициированной в двух точках имплозии сжимается в продольном направлении и превращается в надкритическую сферу. Как таковые, взрывные линзы при этом не используются. Детали этого дизайна до сих пор засекречены, но, предположительно, формирование сходящейся ударной волны осуществляется за счет эллипсоидальной формы имплозирующего заряда, так что между ним и находящейся внутри ядерной сборкой остается заполненное воздухом пространство. Тогда равномерное обжатие сборки осуществляется за счет того, что скорость детонации взрывчатки превышает скорость движения ударной волны в воздухе. Существенно более легкий тампер выполняется не из урана-238, а из хорошо отражающего нейтроны бериллия. Можно предположить, что необычное название данного дизайна - «Лебедь» (первое испытание - Inca в 1956 г.) было подсказано образом взмахнувшего крыльями лебедя, который отчасти ассоциируется с фронтом ударной волны, плавно охватывающим с двух сторон сборку. Таким образом оказалось возможным отказаться от сферической имплозии и, тем самым, уменьшить диаметр имплозивного ядерного боеприпаса с 2 м у бомбы «Толстяк » до 30 см и менее. Для самоликвидации такого боеприпаса без ядерного взрыва инициируется только один из двух детонаторов, и плутониевый заряд разрушается несимметричным взрывом безо всякого риска его имплозии.

Мощность ядерного заряда, работающего исключительно на принципе деления тяжёлых элементов, ограничивается десятками килотонн. Энерговыход (англ. yield ) однофазного боеприпаса, усиленного термоядерным зарядом внутри делящейся сборки, может достигать сотен килотонн. Создать однофазное устройство мегатонного класса практически невозможно, увеличение массы делящегося вещества не решает проблему. Дело в том, что энергия, выделяющаяся в результате цепной реакции, раздувает сборку со скоростью порядка 1000 км/с, поэтому она быстро становится докритической и бо́льшая часть делящегося вещества не успевает прореагировать. Например, в сброшенной на город Нагасаки бомбе «Толстяк » успело прореагировать не более 20 % из 6,2 кг заряда плутония, а в уничтожившей Хиросиму бомбе «Малыш » с пушечной сборкой распалось только 1,4 % из 64 кг обогащенного примерно до 80 % урана. Самый мощный в истории однофазный (британский) боеприпас, взорванный в ходе испытаний Orange Herald в г., достиг мощности 720 кт.

Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.

Дизайн Теллера-Улама для двухфазного боеприпаса («термоядерная бомба»).

В двухфазном устройстве первая стадия физического процесса (primary ) используется для запуска второй стадии (secondary ), в ходе которой выделяется наибольшая часть энергии. Такую схему принято называть дизайном Теллера-Улама.

Энергия от детонации primary передаётся через специальный канал (interstage ) в процессе радиационной диффузии квантов рентгеновского излучения и обеспечивает детонацию secondary посредством радиационной имплозии тампера/пушера, внутри которого находится дейтерид лития-6 и запальный плутониевый стержень. Последний также служит дополнительным источником энергии вместе с пушером и/или тампером из урана-235 или урана-238, причем совместно они могут давать до 85 % от общего энерговыхода ядерного взрыва. При этом термоядерный синтез служит в большей мере источником нейтронов для деления ядер. Под действием нейтронов деления на ядра Li в составе дейтерида лития образуется тритий , который сразу вступает в реакцию термоядерного синтеза с дейтерием.

В первом двухфазном экспериментальном устройстве Ivy Mike (10,5 Мт в испытании 1952 г.) вместо дейтерида лития использовались сжиженный дейтерий и тритий, но в последующем крайне дорогой чистый тритий непосредственно в термоядерной реакции второй стадии не применялся. Интересно отметить, что только термоядерный синтез обеспечил 97 % основного энерговыхода экспериментальной советской «Царь-бомбе » (она же «Кузькина мать»), взорванной в 1961 г. с абсолютно рекордным выходом энергии около 58 Мт. Наиболее эффективным по отношению мощность/вес двухфазным боеприпасом стал американский «монстр» Mark 41 с мощностью 25 Мт, который выпускался серийно для развертывания на бомбардировщиках B-47 , B-52 и в варианте моноблока для МБР Титан-2. Тампер этой бомбы выполнен из урана-238, поэтому она никогда не испытывалась в полном масштабе. При замене тампера на свинцовый мощность данного устройства понижалась до 3 Мт.

Средства доставки

Средством доставки ядерного боеприпаса к цели может быть практически любое тяжелое вооружение. В частности, тактическое ядерное оружие с 1950-х существует в форме артиллерийских снарядов и мин - боеприпасов для ядерной артиллерии . Носителями ядерного оружия могут быть реактивные снаряды РСЗО , но пока ядерных снарядов для РСЗО не существует . Однако, габариты многих современных ракет РЗСО позволяют разместить в них ядерный заряд, аналогичный применяемому ствольной артиллерией, в то время как некоторые РСЗО, например российский «Смерч », по дальности практически сравнялись с тактическими ракетами, другие же (например, американская система MLRS) способны запускать со своих установок тактические ракеты . Тактические ракеты и ракеты большей дальности являются носителями ядерного оружия. В Договорах по ограничению вооружений в качестве средств доставки ядерного оружия рассматриваются баллистические ракеты , крылатые ракеты и самолеты . Исторически самолеты были первыми средствами доставки ядерного оружия, и именно с помощью самолетов было выполнено единственное в истории боевое ядерное бомбометание :

  1. На японский город Хиросима 6 августа 1945 года. В 08:15 местного времени самолёт B-29 «Enola Gay» под командованием полковника Пола Тиббетса, находясь на высоте свыше 9 км, произвёл сброс атомной бомбы «Малыш » («Little Boy») на центр Хиросимы. Взрыватель был установлен на высоту 600 метров над поверхностью; взрыв, эквивалентом от 13 до 18 килотонн тротила, произошёл через 45 секунд после сброса.
  2. На японский город Нагасаки 9 августа 1945 года. В 10:56 самолёт В-29 «Bockscar» под командованием пилота Чарльза Суини прибыл к Нагасаки. Взрыв произошёл в 11:02 местного времени на высоте около 500 метров. Мощность взрыва составила 21 килотонну.

Развитие систем ПВО и ракетного оружия выдвинуло на первый план именно ракеты.

«Старые» ядерные державы США, Россия, Великобритания, Франция и Китай являются т. н. ядерной пятёркой - то есть государствами, которые считаются «легитимными» ядерными державами согласно Договору о нераспространении ядерного оружия . Остальные страны, обладающие ядерным оружием, называются «молодыми» ядерными державами.

Кроме того, на территории нескольких государств, которые являются членами НАТО и другими союзниками, находится или может находиться ядерное оружие США. Некоторые эксперты считают, что в определенных обстоятельствах эти страны могут им воспользоваться .

Испытание термоядерной бомбы на атолле Бикини, 1954 г. Мощность взрыва 11 Мт, из которых 7 Мт выделилось от деления тампера из урана-238

Взрыв первого советского ядерного устройства на Семипалатинском полигоне 29 августа 1949 года. 10 часов 05 минут.

СССР испытал своё первое ядерное устройство мощностью 22 килотонны 29 августа 1949 года на Семипалатинском полигоне . Испытание первой в мире термоядерной бомбы - там же 12 августа 1953 года. Россия стала единственным международно-признанным наследником ядерного арсенала Советского Союза.

Израиль не комментирует информацию о наличии у него ядерного оружия, однако, по единодушному мнению всех экспертов, владеет ядерными боезарядами собственной разработки с конца 1960-х - начала 1970-х гг.

Небольшой ядерный арсенал был у ЮАР , но все шесть собранных ядерных зарядов были добровольно уничтожены при демонтаже режима апартеида в начале 1990-х годов . Полагают, что ЮАР проводила собственные или совместно с Израилем ядерные испытания в районе острова Буве в 1979 году . ЮАР - единственная страна, которая самостоятельно разработала ядерное оружие и при этом добровольно от него отказалась.

По различным причинам добровольно отказались от своих ядерных программ Бразилия , Аргентина , Ливия . В разные годы подозревалось, что ядерное оружие могут разрабатывать ещё несколько стран. В настоящее время предполагается, что наиболее близок к созданию собственного ядерного оружия Иран . Также по мнению многих специалистов, некоторые страны (например, Япония и Германия), не обладающие ядерным оружием, по своим научно-производственным возможностям способны создать его в течение короткого времени после принятия политического решения и финансирования.

Исторически потенциальную возможность создать ядерное оружие второй или даже первой имела нацистская Германия . Однако Урановый проект до разгрома Третьего Рейха завершён не был по ряду причин.

Запасы ядерного оружия в мире

Количество боеголовок (активных и в резерве)

1947 1952 1957 1962 1967 1972 1977 1982 1987 1989 1992 2002 2010
США 32 1005 6444 ≈26000 >31255 ≈27000 ≈25000 ≈23000 ≈23500 22217 ≈12000 ≈10600 ≈8500
СССР/Россия - 50 660 ≈4000 8339 ≈15000 ≈25000 ≈34000 ≈38000 ≈25000 ≈16000 ≈11000
Великобритания - - 20 270 512 ≈225

Содержание статьи

ЯДЕРНОЕ ОРУЖИЕ, в отличие от обычного оружия, оказывает разрушающее действие за счет ядерной, а не механической или химической энергии. По разрушительной мощи только взрывной волны одна единица ядерного оружия может превосходить тысячи обычных бомб и артиллерийских снарядов. Кроме того, ядерный взрыв оказывает на все живое губительное тепловое и радиационное действие, причем иногда на больших площадях.

В это время велась подготовка к вторжению войск союзников в Японию. Чтобы обойтись без вторжения и избежать связанных с ним потерь – сотен тысяч жизней военнослужащих союзных войск, – 26 июля 1945 президент Трумэн из Потсдама предъявил ультиматум Японии: либо безоговорочная капитуляция, либо «быстрое и полное уничтожение». Японское правительство не ответило на ультиматум, и президент отдал приказ сбросить атомные бомбы.

6 августа самолет B-29 «Энола-Гэй», поднявшийся в воздух с базы на Марианских островах, сбросил на Хиросиму бомбу из урана-235 мощностью ок. 20 кт. Большой город состоял в основном из легких деревянных построек, но в нем было много и железобетонных зданий. Бомба, взорвавшаяся на высоте 560 м, опустошила зону площадью ок. 10 кв. км. Были разрушены практически все деревянные строения и многие даже самые прочные дома. Пожары нанесли городу непоправимый ущерб. Было убито и ранено 140 тыс. человек из 255-тысячного населения города.

Японское правительство и после этого не сделало недвусмысленного заявления о капитуляции, и поэтому 9 августа была сброшена вторая бомба – на этот раз на Нагасаки. Людские потери, хотя и не такие, как в Хиросиме, были тем не менее огромны. Вторая бомба убедила японцев в невозможности сопротивления, и император Хирохито предпринял шаги в направлении капитуляции Японии.

В октябре 1945 президент Трумэн законодательным порядком передал ядерные исследования под гражданский контроль. Законопроектом, принятым в августе 1946, была учреждена комиссия по атомной энергии из пяти членов, назначаемых президентом США.

Эта комиссия прекратила свою деятельность 11 октября 1974, когда президент Дж.Форд создал комиссию по ядерной регламентации и управление по энергетическим исследованиям и разработкам, причем на последнее возлагалась ответственность за дальнейшие разработки ядерного оружия. В 1977 было создано министерство энергетики США, которое должно было контролировать научные исследования и разработки в области ядерного оружия.

ИСПЫТАНИЯ

Ядерные испытания проводятся в целях общего исследования ядерных реакций, совершенствования оружейной техники, проверки новых средств доставки, а также надежности и безопасности методов хранения и обслуживания оружия. Одна из главных проблем при проведении испытаний связана с необходимостью обеспечения безопасности. При всей важности вопросов защиты от прямого воздействия ударной волны, нагрева и светового излучения первостепенное значение имеет все-таки проблема радиоактивных осадков. Пока что не создано «чистого» ядерного оружия, не приводящего к выпадению радиоактивных осадков.

Испытания ядерного оружия могут проводиться в космосе, в атмосфере, на воде или на суше, под землей или под водой. Если они проводятся над землей или над водой, то в атмосферу вносится облако мелкой радиоактивной пыли, которая затем широко рассеивается. При испытаниях в атмосфере образуется зона долго сохраняющейся остаточной радиоактивности. Соединенные Штаты, Великобритания и Советский Союз отказались от атмосферных испытаний, ратифицировав в 1963 договор о запрещении ядерных испытаний в трех средах. Франция последний раз провела атмосферное испытание в 1974. Самое последнее испытание в атмосфере было проведено в КНР в 1980. После этого все испытания проводились под землей, а Францией – под океанским дном.

ДОГОВОРЫ И СОГЛАШЕНИЯ

В 1958 Соединенные Штаты и Советский Союз договорились о моратории на испытания в атмосфере. Тем не менее СССР возобновил испытания в 1961, а США – в 1962. В 1963 комиссия ООН по разоружению подготовила договор о запрещении ядерных испытаний в трех средах: атмосфере, космическом пространстве и под водой. Договор ратифицировали Соединенные Штаты, Советский Союз, Великобритания и свыше 100 других государств-членов ООН. (Франция и КНР тогда его не подписали.)

В 1968 был открыт к подписанию договор о нераспространении ядерного оружия, подготовленный тоже комиссией ООН по разоружению. К середине 1990-х годов его ратифицировали все пять ядерных держав, а всего подписали 181 государство. В число 13 не подписавших входили Израиль, Индия, Пакистан и Бразилия. Договор о нераспространении ядерного оружия запрещает владеть ядерным оружием всем странам, кроме пяти ядерных держав (Великобритании, КНР, России, Соединенных Штатов и Франции). В 1995 этот договор был продлен на неопределенный срок.

Среди двусторонних соглашений, заключенных между США и СССР, были договоры об ограничении стратегических вооружений (ОСВ-I в 1972, ОСВ-II в 1979), об ограничении подземных испытаний ядерного оружия (1974) и о подземных ядерных взрывах в мирных целях (1976).

В конце 1980-х годов упор был перенесен со сдерживания роста вооружений и ограничения ядерных испытаний на сокращение ядерных арсеналов сверхдержав. Договор о ядерных вооружениях средней и меньшей дальности, подписанный в 1987, обязывал обе державы ликвидировать свои запасы ядерных ракет наземного базирования с дальностью 500–5500 км. Переговоры между США и СССР о сокращении наступательных вооружений (СНВ), проводившиеся как продолжение переговоров ОСВ, завершились в июле 1991 заключением договора (СНВ-1), по которому обе стороны согласились сократить примерно на 30% свои запасы ядерных баллистических ракет большой дальности. В мае 1992, когда распался Советский Союз, США подписали соглашение (т.н. Лиссабонский протокол) с бывшими республиками СССР, владевшими ядерным оружием, – Россией, Украиной, Белоруссией и Казахстаном, – в соответствии с которым все стороны обязаны выполнять договор СНВ-1. Был также подписан договор СНВ-2 между Россией и США. Им устанавливается предельное число боеголовок для каждой из сторон, равное 3500. Сенат США ратифицировал этот договор в 1996.

Договором по Антарктике от 1959 был введен принцип безъядерной зоны. С 1967 вошел в силу договор о запрещении ядерного оружия в Латинской Америке (Тлателолькский договор), а также договор о мирном исследовании и использовании космического пространства. Велись переговоры и о других безъядерных зонах.

РАЗРАБОТКИ В ДРУГИХ СТРАНАХ

Советский Союз взорвал свою первую атомную бомбу в 1949, а термоядерную – в 1953. В арсеналах СССР имелось тактическое и стратегическое ядерное оружие, в том числе совершенные системы доставки. После распада СССР в декабре 1991 российский президент Б.Ельцин стал добиваться того, чтобы ядерное оружие, размещенное на Украине, в Белоруссии и Казахстане, было перевезено для ликвидации или хранения в Россию. Всего к июню 1996 было приведено в неработоспособное состояние 2700 боеголовок в Белоруссии, Казахстане и Украине, а также 1000 – в России.

В 1952 Великобритания взорвала свою первую атомную бомбу, а в 1957 – водородную. Эта страна полагается на небольшой стратегический арсенал баллистических ракет подводного базирования БРПЛ (т.е. запускаемых с подлодок), а также на использование (до 1998) авиационных средств доставки.

Франция провела испытания ядерного оружия в пустыне Сахара в 1960, а термоядерного – в 1968. До начала 1990-х годов французский арсенал тактического ядерного оружия состоял из баллистических ракет малой дальности и ядерных бомб, доставляемых самолетами. Стратегические вооружения Франции – это баллистические ракеты промежуточной дальности и БРПЛ, а также ядерные бомбардировщики. В 1992 Франция приостановила проведение испытаний ядерного оружия, но в 1995 возобновила их – для модернизации боеголовок ракет подводного базирования. В марте 1996 французское правительство объявило, что полигон для запуска стратегических баллистических ракет, расположенный на плато д"Альбион в центральной Франции, будет поэтапно ликвидирован.

КНР в 1964 стала пятой ядерной державой, а в 1967 взорвала термоядерное устройство. Стратегический арсенал КНР состоит из ядерных бомбардировщиков и баллистических ракет промежуточной дальности, а тактический – из баллистических ракет средней дальности. В начале 1990-х годов КНР дополнила свой стратегический арсенал баллистическими ракетами подводного базирования. После апреля 1996 КНР оставалась единственной ядерной державой, не прекратившей ядерных испытаний.

Распространение ядерного оружия.

Кроме перечисленных выше, имеются и другие страны, располагающие технологией, необходимой для разработки и создания ядерного оружия, но те из них, которые подписали договор о нераспространении ядерного оружия, отказались от применения ядерной энергии в военных целях. Известно, что Израиль, Пакистан и Индия, не подписавшие названного договора, имеют ядерное оружие. КНДР, подписавшая договор, подозревается в скрытном проведении работ по созданию ядерного оружия. В 1992 ЮАР объявила, что в ее распоряжении имелось шесть единиц ядерного оружия, но они были уничтожены, и ратифицировала договор о нераспространении. Инспектирование, проведенное специальной комиссией ООН и МАГАТЭ в Ираке после войны в Персидском заливе (1990–1991), показало, что у Ирака имелась серьезно поставленная программа разработки ядерного, биологического и химического оружия. Что касается его ядерной программы, то ко времени войны в Персидском заливе Ираку оставалось лишь два-три года до создания готового к применению ядерного оружия. Правительства Израиля и США утверждают, что своя программа разработки ядерного оружия имеется у Ирана. Но Иран подписал договор о нераспространении, а в 1994 вошло в силу соглашение с МАГАТЭ о международном контроле. С тех пор инспекторы МАГАТЭ не сообщали фактов, свидетельствующих о работах по созданию ядерного оружия в Иране.

ДЕЙСТВИЕ ЯДЕРНОГО ВЗРЫВА

Ядерное оружие предназначено для уничтожения живой силы и военных объектов противника. Важнейшими поражающими факторами для людей являются ударная волна, световое излучение и проникающая радиация; разрушающее действие на военные объекты обусловлено в основном ударной волной и вторичными тепловыми эффектами.

При детонации взрывчатых веществ обычного типа почти вся энергия выделяется в виде кинетической энергии, которая практически полностью переходит в энергию ударной волны. При ядерном и термоядерном взрывах по реакции деления ок. 50% всей энергии переходит в энергию ударной волны, а ок. 35% – в световое излучение. Остальные 15% энергии высвобождаются в форме разных видов проникающей радиации.

При ядерном взрыве образуется сильно нагретая, светящаяся, приблизительно сферическая масса – т.н. огненный шар. Он сразу же начинает расширяться, охлаждаться и подниматься вверх. По мере его охлаждения пары в огненном шаре конденсируются, образуя облако, содержащее твердые частицы материала бомбы и капельки воды, что придает ему вид обычного облака. Возникает сильная воздушная тяга, всасывающая в атомное облако подвижный материал с поверхности земли. Облако поднимается, но через некоторое время начинает медленно опускаться. Опустившись до уровня, на котором его плотность близка к плотности окружающего воздуха, облако расширяется, принимая характерную грибовидную форму.

Таблица 1. Действие ударной волны
Таблица 1. ДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ
Объекты и избыточное давление, необходимое для их серьезного повреждения Радиус серьезного повреждения, м
5 кт 10 кт 20 кт
Танки (0,2 МПа) 120 150 200
Автомашины (0,085 МПа) 600 700 800
Люди в застроенной местности (вследствие предсказуемых вторичных эффектов) 600 800 1000
Люди на открытой местности (вследствие предсказуемых вторичных эффектов) 800 1000 1400
Железобетонные здания (0,055 МПа) 850 1100 1300
Самолеты на земле (0,03 МПа) 1300 1700 2100
Каркасные здания (0,04 МПа) 1600 2000 2500

Прямое энергетическое действие.

Действие ударной волны.

Через долю секунды после взрыва от огненного шара распространяется ударная волна – как бы движущаяся стена горячего сжатого воздуха. Толщина этой ударной волны значительно больше, чем при обычном взрыве, и поэтому она дольше воздействует на встречный объект. Скачок давления причиняет ущерб из-за увлекающего действия, приводящего к перекатыванию, обрушению и разметыванию объектов. Сила ударной волны характеризуется создаваемым ею избыточным давлением, т.е. превышением нормального атмосферного давления. При этом пустотелые структуры легче разрушаются, нежели сплошные или армированные. Приземистые и подземные сооружения в меньшей мере подвержены разрушительному действию ударной волны, чем высокие здания.
Тело человека обладает удивительной стойкостью к ударной волне. Поэтому прямое воздействие избыточного давления ударной волны не приводит к значительным людским потерям. Большей частью люди гибнут под обломками обрушивающихся зданий и получают травмы от быстро движущихся предметов. В табл. 1 представлен ряд различных объектов с указанием избыточного давления, вызывающего серьезные повреждения, и радиуса зоны, в которой наблюдается серьезное повреждение при взрывах мощностью 5, 10 и 20 кт тротилового эквивалента.

Действие светового излучения.

Как только возникает огненный шар, он начинает испускать световое излучение, в том числе инфракрасное и ультрафиолетовое. Происходят две вспышки светового излучения: интенсивная, но малой длительности, при взрыве, обычно слишком короткая, чтобы вызвать значительные людские потери, а затем вторая, менее интенсивная, но более длительная. Вторая вспышка оказывается причиной почти всех людских потерь, обусловленных световым излучением.
Световое излучение распространяется прямолинейно и действует в пределах видимости огненного шара, но не обладает сколько-нибудь значительной проникающей способностью. Надежной защитой от него может быть непрозрачная ткань, например палаточная, хотя сама она может загореться. Светлоокрашенные ткани отражают световое излучение, а поэтому требуют для воспламенения большей энергии излучения, чем темные. После первой вспышки света можно успеть спрятаться за тем или иным укрытием от второй вспышки. Степень поражения человека световым излучением зависит от того, в какой мере открыта поверхность его тела.
Прямое действие светового излучения обычно не приводит к большим повреждениям материалов. Но поскольку такое излучение вызывает возгорание, оно может причинять большой ущерб вследствие вторичных эффектов, о чем свидетельствуют колоссальные пожары в Хиросиме и Нагасаки.

Проникающая радиация .

Начальная радиация, состоящая в основном из гамма-излучения и нейтронов, испускается самим взрывом в течение примерно 60 с. Она действует в пределах прямой видимости. Ее поражающее действие можно уменьшить, если, заметив первую взрывную вспышку, сразу спрятаться в укрытие. Начальная радиация обладает значительной проникающей способностью, так что для защиты от нее требуется толстый лист металла или толстый слой грунта. Стальной лист толщиной 40 мм пропускает половину падающей на него радиации. Как поглотитель радиации сталь в 4 раза эффективнее бетона, в 5 раз – земли, в 8 раз – воды, и в 16 раз – дерева. Но она в 3 раза менее эффективна, чем свинец.
Остаточная радиация испускается длительное время. Она может быть связана с наведенной радиоактивностью и с радиоактивными осадками. В результате действия нейтронной составляющей начальной радиации на грунт вблизи эпицентра взрыва грунт становится радиоактивным. При взрывах на поверхности земли и на небольшой высоте наведенная радиоактивность особенно велика и может сохраняться длительное время.
«Радиоактивными осадками» называется загрязнение частицами, выпадающими из радиоактивного облака. Это частицы делящегося материала самой бомбы, а также материала, затянутого в атомное облако с земли и ставшего радиоактивным в результате облучения нейтронами, высвобождающимися в ходе ядерной реакции. Такие частицы постепенно оседают, что приводит к радиоактивному загрязнению поверхностей. Более тяжелые из них быстро оседают неподалеку от места взрыва. Более легкие радиоактивные частицы, уносимые ветром, могут оседать на расстоянии многих километров, заражая большие площади на протяжении длительного времени.
Прямые людские потери от радиоактивных осадков могут быть значительны вблизи эпицентра взрыва. Но с увеличением расстояния от эпицентра интенсивность радиации быстро уменьшается.

Виды поражающего действия радиации.

Радиация разрушает ткани тела. Поглощенная доза излучения – это энергетическая величина, измеряемая в радах (1 рад = 0,01 Дж/кг) для всех видов проникающего излучения. Разные виды излучения оказывают разное действие на организм человека. Поэтому экспозиционная доза рентгеновского и гамма-излучения измеряется в рентгенах (1Р = 2,58×10–4 Кл/кг). Вред, нанесенный человеческой ткани поглощением радиации, оценивается в единицах эквивалентной дозы излучения – бэрах (бэр – биологический эквивалент рентгена). Чтобы вычислить дозу в рентгенах, необходимо дозу в радах умножить на т.н. относительную биологическую эффективность рассматриваемого вида проникающей радиации.
Все люди на протяжении своей жизни поглощают некоторое природное (фоновое) проникающее излучение, а многие – искусственное, например рентгеновское. Человеческий организм, по-видимому, справляется с таким уровнем облучения. Вредные же последствия наблюдаются тогда, когда либо полная накопленная доза слишком велика, либо облучение произошло за короткое время. (Правда, доза, полученная в результате равномерного облучения на протяжении более длительного времени, тоже может приводить к тяжелым последствиям.)
Как правило, полученная доза облучения не приводит к немедленному поражению. Даже летальные дозы могут в течение часа и более никак не сказываться. Ожидаемые результаты облучения (всего тела) человека разными дозами проникающей радиации представлены в табл. 2.

Таблица 2. Биологическая реакция людей на проникающую радиацию
Таблица 2. БИОЛОГИЧЕСКАЯ РЕАКЦИЯ ЛЮДЕЙ НА ПРОНИКАЮЩУЮ РАДИАЦИЮ
Номинальная доза, рад Появление первых симптомов Снижение боеспособности Госпитализация и дальнейшее протекание
0–70 В пределах 6 ч легкие случаи проходящей головной боли и тошноты – до 5% группы в верхней части диапазона дозы. Нет. Госпитализация не требуется. Работоспособность сохраняется.
70–150 В пределах 3–6 ч проходящая слабая головная боль и тошнота. Слабая рвота – до 50% группы. Небольшое снижение способности выполнять свои обязанности у 25% группы. До 5% могут быть небоеспособ-ными. Возможна госпитализация (20–30 сут) менее чем 5% в верхней части диапазона дозы. Возвращение в строй, летальные исходы крайне маловероятны.
150–450 В пределах 3 ч головная боль, тошнота и слабость. Легкие случаи поноса. Рвота – до 50% группы. Сохраняется способность выполнять простые задачи. Способность выполнять боевые и сложные задачи может быть снижена. Свыше 5% небоеспособных в нижней части диапазона дозы (больше – с увеличением дозы). Показана госпитализация (30–90 сут) после латентного периода 10–30 сут. Смертельные исходы (от 5% и менее до 50% в верхней части диапазона дозы). При наибольших дозах возвращение в строй маловероятно.
450–800 В пределах 1 ч сильная тошнота и рвота. Понос, лихорадочное состояние в верхней части диапазона. Сохраняется способность выполнять простые задачи. Значительное снижение боеспособности в верхней части диапазона на период более 24 ч. Госпитализация (90–120 сут) для всей группы. Латентный период 7–20 сут. 50% смертельных исходов в нижней части диапазона с увеличением к верхнему пределу. 100% смертельных исходов в пределах 45 сут.
800–3000 В пределах 0,5–1 ч сильные и продолжительные рвота и понос, лихорадка Значительное снижение боеспособности. В верхней части диапазона у некоторых период временной полной небоеспособности. Показана госпитализация для 100%. Латентный период менее 7 сут. 100% смертельных исходов в пределах 14 сут.
3000–8000 В пределах 5 мин сильные и продолжительные понос и рвота, лихорадка и упадок сил. В верх-ней части диапазона дозы возможны судороги. В пределах 5 мин полный выход из строя на 30–45 мин. После этого частичное восстановление, но с функциональными расстройствами до летального исхода. Госпитализация для 100%, латентный период 1–2 сут. 100% смертельных исходов в пределах 5 сут.
> 8000 В пределах 5 мин. те же симптомы, что и выше. Полный, необратимый выход из строя. В пределах 5 мин потеря способности выполнять задачи, требующие физических усилий. Госпитализация для 100%. Латентного периода нет. 100% смертельных исходов через 15–48 ч.


Рекомендуем почитать

Наверх